Освоение космоса в будущем. Механика космического полета в элементарном изложении - Левантовский В.И

Текст представляет собой интервью А.Л.Чижевского с К.Э.Циолковским. Приводится по первопубликации в журнале «Химия и жизнь» (№ 1, 1977 г.).

Я - чистейший материалист. Ничего не признаю, кроме материи.

К.Э.Циолковский

Человечество бессмертно.

К.Э.Циолковский

…Однажды, войдя в светёлку, я застал К.Э.Циолковского в глубоком раздумье. Он был в светлой косоворотке, с расстёгнутым воротом и сидел в своём кресле, глубоко войдя в него. Он не сразу заметил, что я поднялся по лестнице и подошёл к нему.

«Помешал», - пронеслось у меня в голове. Но Константин Эдуардович протянул мне руку и сказал:

Садитесь, Александр Леонидович. Это я вот зря задумался о вещах, не поддающихся объяснению…

Мы поздоровались, и я сел рядом на стул.

Как это - не поддающихся объяснению? - спросил я. - Что за чудеса? Мне кажется, всё, что существует в мире, подлежит объяснению.

Конечно, с точки зрения человека. Для этого ему дан мозг, хотя и несовершенный, особенно у некоторых…

Нет, Александр Леонидович, это не совсем так. Мозг, верно, во многое может проникнуть, но не во всё, далеко не во всё… Есть и ему границы…

Так это ещё древние знали, - заметил я, - наше незнание огромно, а знаем мы очень мало.

Нет, это вопрос совсем другой категории. Сам вопрос этот не может быть поставлен, ибо он является вопросом всех вопросов…

То есть? Не совсем понимаю…

Очень просто. Есть вопросы, на которые мы можем дать ответ - пусть не точный, но удовлетворительный для сегодняшнего дня. Есть вопросы, о которых мы можем говорить, которые мы можем обсуждать, спорить, не соглашаться, но есть вопросы, которые мы не можем задавать ни другому, ни даже самому себе, но непременно задаём себе в минуты наибольшего понимания мира. Эти вопросы: зачем все это? Если мы задали себе вопрос такого рода, значит мы не просто животные, а люди с мозгом, в котором есть не просто сеченовские рефлексы и павловские слюни, а нечто другое, иное, совсем не похожее ни на рефлексы, ни на слюни… Не прокладывает ли материя, сосредоточенная в мозгу человека, некоторых особых путей, независимо от сеченовских и павловских примитивных механизмов? Иначе говоря, нет ли в мозговой материи элементов мысли и сознания, выработанных на протяжении миллионов лет и свободных от рефлекторных аппаратов, даже самых сложных?.. Да-с, Александр Леонидович, как только вы зададите себе вопрос такого рода, значит вы вырвались из традиционных тисков и взмыли в бесконечные выси: зачем всё это - зачем существуют материя, растения, животные, человек и его мозг - тоже материя, - требующий ответа на вопрос: зачем всё это? Зачем существует мир, Вселенная, Космос? Зачем? Зачем?

Материя - единое существующее, независимо от её движения или перемещения в пространстве. Я говорю о внешнем движении, например, движении моей руки со слухачом или движении Земли по её орбите. Это движение не определяет материи, и им можно пренебречь. Глубокое познание строения материи нам пока не доступно. Но некогда наступит переломный момент, когда человечество приблизится к этому «эзотерическому» знанию. Тогда оно и подойдёт вплотную к вопросу: зачем? Но для этого должны пройти миллиарды лет космической эры

Многие думают, что я хлопочу о ракете и беспокоюсь о её судьбе из-за самой ракеты. Это было бы глубочайшей ошибкой. Ракеты для меня только способ, только метод проникновения в глубину космоса, но отнюдь не самоцель. Не доросшие до такого понимания вещей люди говорят о том, чего не существует, что делает меня каким-то однобоким техником, а не мыслителем. Так думают, к сожалению, многие, кто говорит или пишет о ракетном корабле. Не спорю, очень важно иметь ракетные корабли, ибо они помогут человечеству расселиться по мировому пространству. И ради этого расселения я-то и хлопочу. Будет иной способ передвижении в космосе - приму и его… Вся суть - в переселении с Земли и в заселении Космоса. Надо идти навстречу, так сказать, космической философии! К сожалению, наши философы об этом совсем не думают. А уж кому-кому как не философам следовало бы заняться этим вопросом. Но они либо не хотят, либо не понимают великого значения вопроса, либо просто боятся. И то возможно! Представьте себе философа, который боится! Демокрита, который трусит! Немыслимо!

Дирижабли, ракеты, второе начало термодинамики - это дело нашего дня, а вот ночью мы живём другой жизнью, если зададим себе этот проклятый вопрос. Говорят, что задавать такой вопрос - просто бессмысленно, вредно и ненаучно. Говорят - даже преступно. Согласен с такой трактовкой… Ну, а если он, этот вопрос, всё же задаётся… Что тогда делать? Отступать, зарываться в подушки, опьянять себя, ослеплять себя? И задаётся он не только здесь в светёлке Циолковского, но некоторые головы полны им, насыщены им - и уже не одно столетие, не одно тысячелетие… Этот вопрос не требует ни лабораторий, ни трибун, ни афинских академий. Его не разрешил никто: ни наука, ни религия, ни философия. Он стоит перед человечеством - огромный, бескрайний, как весь этот мир, и вопиет: зачем? зачем? Другие - понимающие - просто молчат.

Да, да, - сказал я. - Ответа на этот вопрос нет. Но, может быть, вы, Константин Эдуардович, что-либо придумали?

Циолковский рассердился. Слуховой рупор заходил в его руках.

Придумали? Как вы спрашиваете? Нет, Александр Леонидович, говорить так нельзя. Сей учитель, как и все малые мира сего, - и Константин Эдуардович показал на свою грудь, - ничего не может ответить на этот вопрос… Ничего, кроме некоторых догадок, может быть, и достоверных!

Прежде всего, чтобы ответить на какой-либо вопрос, нужно его ясно сформулировать, - сказал я.

Ну, это сколько угодно. Сформулировать этот вопрос я могу, остаётся лишь неясным: может ли человек верно и точно сформулировать его. Вот этого я не знаю, хотя, конечно, хотел бы знать. Вопрос же сводится все к тому же: зачем и почему существует этот мир, ну и, конечно, все мы, то есть суть материя. Вопрос этот прост, но кому мы его можем задать? Самим себе? Но это тщетно! Тысячи философов, учёных, религиозных деятелей за несколько тысячелетий так или иначе пытались его разрешить, но наконец признали его неразрешимым. От этого факта не стало легче тому, кто этот вопрос задаёт себе. Он всё так же мучится, страдает из-за своего незнания, некоторые люди даже говорят, что вопрос такого рода «ненаучен» (поймите это: ненаучен!), ибо ответить на него никто даже из умнейших людей не может. Только они, эти умнейшие люди, не объяснили, почему он ненаучен. Я подумал так: всякий вопрос может быть научным, если на него рано или поздно будет дан ответ. К «ненаучным» же относятся все те вопросы, которые остаются безответными. Но человек постепенно разгадывает некоторые загадки такого рода. Например, через сто или через тысячу лет мы узнаем, как устроен атом, хотя вряд ли узнаем, что такое «электричество», из которого построены все атомы, вся материя, то есть весь мир, космос и т. д. Потом наука многие тысячелетия будет разрешать вопрос о том, что такое «электричество». Значит, как наука ни старается, природа все время ставит ей новые и новые задачи величайшей сложности! При разрешении вопроса об атоме или об электричестве возникнет ещё новый вопрос о чем-либо малопонятном человеческому уму… И так далее. Выходит, что-либо человек не дорос до решения такого рода проблем, либо природа хитрит с ним, боится его, как бы он не узнал более, чем то положено по уставу. А об уставе этом мы тоже ничего путного не знаем. Опять «темно во облацех». Так одно цепляется за другое, а в действительности выходит, что мы стоим перед непроглядной стеной неизвестности.

Вы прочитали только начало статьи К.Э. Циолковского.

Приятного прочтения!

Константин Эдуардович Циолковский родился 5 (17) сентября 1857 года в селе Ижевском Рязанской губернии в семье лесничего. Из-за болезни он не смог учиться в школе и вынужден был заниматься самостоятельно. Освоив большую часть курса своими силами в единственной бесплатной библиотеке Москвы, сдал экзамен на звание учителя народных училищ и получил должность учителя в Боровском уездном училище. Позже его переводят преподавать в Калугу - там и прошла вся дальнейшая жизнь. В свободное время Циолковский занимался наукой. За работу «Механика животного организма» был избран действительным членом Русского физико-химического общества. После революции его работы стали востребованными, были признаны новаторскими и будоражили умы современников. В 1926–1929 годах Циолковский занимался практическими вопросами космических полетов. В это время рождаются самые смелые и даже фантастические идеи, которым суждено сбыться в будущем. Циолковский рассчитал оптимальную высоту для полета вокруг Земли, отстаивал идею разнообразия форм жизни во Вселенной, придумал первые колесные шасси, разработал принципы движения на воздушной подушке, писал о будущем открытии лазера и предсказал проникновение математики во все области науки. Умер Циолковский 19 сентября 1935 года.

За многочисленные и сомнительные с точки зрения науки философские труды Циолковского можно было бы назвать великим мечтателем и чудаком из далекого космоса, если бы не одно «но»: Константин Эдуардович - первый идеолог и теоретик освоения космического пространства человеком. Циолковский всегда грезил о космосе и стремился свои мечтания обосновать теоретически и даже практически. Первые мысли об использовании ракет для полета в космос высказывались ученым еще в 1883 году, однако стройной математической теории реактивного движения суждено было появиться лишь тринадцать лет спустя.

В 1903 году в пятом выпуске журнала «Научное обозрение» он опубликовал часть статьи «Исследование мировых пространств реактивными приборами», но, как и многие открытия и работы Циолковского, она была слишком далека от реалий современной жизни. Однако именно в этой статье ученый привел математические выкладки и обоснования реальной возможности применения ракет для межпланетных путешествий. Циолковский не ограничился тем, что указал на средство проникновения человека в космос - ракету, он также и дал подробное описание двигателя. Многие теории Константина Эдуардовича можно назвать пророческими, например о выборе жидкого двухкомпонентного топлива и о возможности использования других видов топлива, в частности энергии распада атомов. Циолковский выдвинул революционную по тем временам идею создания электрореактивных двигателей, в присущей ему манере написав, что «может быть, с помощью электричества получится со временем придавать громадную скорость выбрасываемым из реактивного прибора частицам».

Его идеи о регенеративном охлаждении камеры сгорания и сопла двигателя компонентами топлива, керамической изоляции элементов конструкции, раздельном хранении и насосной подаче топлива в камеру сгорания, оптимальных траекториях спуска космического аппарата при возвращении из космоса с успехом применяются сегодня.

Ученый активно совмещал теорию и практику, стараясь найти возможные пути реального осуществления всего, что он задумал. Циолковский научно обосновал проблемы, связанные с ракетным космическим полетом. Например, он детально рассмотрел все, что касается ракеты: законы движения, ее конструкцию, вопросы управления, проведение испытаний, обеспечение надежной работы всех систем, создание приемлемых условий полета и даже подбор психологически совместимого экипажа.

Любопытно, что, не имея практически никаких приборов, Циолковский рассчитал оптимальную высоту для полета вокруг Земли - промежуток от трехсот до восьмисот километров над планетой. Именно на этих высотах и проходят современные космические полеты. Циолковский вывел формулу, которая впоследствии будет названа его именем, позволяющую определить скорость летательного аппарата под воздействием тяги ракетного двигателя. При этом ученому удалось получить ответ на важный практический вопрос: сколько нужно взять топлива в ракету, чтобы получить нужную скорость отрыва от Земли и благополучно покинуть планету? Результат расчета был таков: чтобы ракета с экипажем развила скорость отрыва и отправилась в межпланетный полет, нужно взять топлива в сто раз больше, чем весят корпус ракеты, двигатель, механизмы, приборы и пассажиры, вместе взятые. Но как вместить в корабль столько топлива? Ученый нашел оригинальный выход - ракетный поезд, состоящий из нескольких ракет, соединенных между собой. В передней ракете находятся определенное количество топлива, пассажиры и оборудование. Далее ракеты работают поочередно, разгоняя весь межпланетный поезд. Как только топливо в одной ракете выгорит до конца, она сбрасывается: в результате удаляются опустошенные баки и корабль становится легче. Далее начинает работать вторая ракета, затем - третья и т. д. На основании формулы Циолковского был сделан важный вывод о том, что возможности ракеты в первую очередь определяются характеристиками двигателя и совершенством ракетной конструкции.

Циолковский оставил богатейшее научное наследие. Не все его идеи представляют большую ценность для науки, но все же ко многим вопросам ученый обратился первым. Его взгляды даже сейчас кажутся немного фантастическими. Поражает то, с какой точностью ученый предсказывал будущее. Так, ему принадлежит первенство в изучении вопроса об искусственном спутнике Земли и его роли для народного хозяйства. Он высказал идею о создании будущими поколениями околоземных станций в качестве искусственных поселений, которые будут использовать энергию Солнца и служить промежуточными базами для межпланетных сообщений. Данная идея межпланетных станций была главным средством достижения заветной мечты - освоения человеком околосолнечного пространства и создания в будущем «эфирных поселений».

Один из создателей первого спутника как-то признался, что далеко не сразу осознал, какое великое дело было совершено тогда, в 1957 году. И в оправдание сослался на поэта В. Брюсова, сказавшего, что "грандиозные события почти неощутимы для непосредственных участников: каждый видит лишь одну деталь, находящуюся перед глазами, объем целого ускользает от наблюдения. Поэтому, вероятно, очень многие как-то не замечают, что человечество вошло в "эпоху чудес".

Мы вступаем лишь в четвертое десятилетие космической эры, а уже вполне привыкли к таким чудесам, как охватившие всю Землю спутниковые системы связи и наблюдения за погодой, навигации и оказания помощи терпящим бедствие на суше и море. Как о чем-то вполне обыденном слушаем сообщения о многомесячной работе людей на орбите, не удивляемся следам на Луне, снятым "в упор" фотографиям далеких планет, впервые показанному космическими аппаратами ядру кометы.

За очень короткий исторический срок космонавтика стала неотъемлемой частью нашей жизни, верным помощником в хозяйственных делах и познании окружающего мира. И не приходится сомневаться, что дальнейшее развитие земной цивилизации не сможет обойтись без освоения всего околоземного пространства.

Например, в использовании ресурсов близлежащего космоса многие ученые видят выход из надвигающегося экологического кризиса. "Ясно, что космический потенциал - не панацея от всех бед,- пишет крупный специалист в области космонавтики К. Эрике. - Предлагаемый путь - просто одна из наиболее эффективных в арсенале возможностей, доступных нам сегодня для гарантии выживания человечества как современного общества. Это нужно также в целях непрерывной эволюции нашего общества при сохранении земной природы, которая является уникальной для области, простирающейся на много световых лет вокруг нас".

Освоение космоса - этой "провинции всего человечества" - продолжается нарастающими темпами. Оглядываясь на уже достигнутое, можно попытаться определить ориентировочные сроки ближайших этапов использования новой для нас среды обитания. Намного рискованней делать долгосрочные прогнозы. Но и такие попытки известны. Доктор физико-математических наук JI. Лесков, например, заглядывает вперед на целое тысячелетие.

По мнению ученого, за годы, оставшиеся до наступления следующего века, в космосе будет организовано сначала опытно-промышленное, а затем и массовое производство улучшенных материалов. Практически неограниченные энергетические возможности, наряду с глубоким вакуумом и невесомостью,- вот чем прежде всего привлекает космос производственников. Однако уникальные технологические условия не единственная причина предполагаемого выноса туда ряда предприятий, а может быть, и целых отраслей, таких, скажем, как химическая, металлургическая, атомная....

Наша планета уже сегодня так засорена отходами производства, что дальнейшее его расширение угрожает катастрофическими последствиями всей биосфере. Да и сырьевые запасы Земли не столь велики, чтобы жить спокойно, не заботясь о будущем. Поэтому все больше специалистов приходят к выводу о неизбежности широкой индустриализации околоземного пространства. К этому готовятся космические наука и техника, продолжая изучать, как протекают на орбитах различные технологические процессы, и одновременно создавая проекты их энергетического обеспечения.

Прогнозируя развитие космонавтики на тот же период, другие специалисты обращают внимание на различные направления в этом процессе. Президент Международной академии астронавтики Дж. Мюллер, например, указывает на предстоящее широкое использование спутниковой связи для всестороннего информационного обслуживания людей во всем мире. К нему присоединяется советский академик В. Авдуевский. "Соединение космической техники с микроэлектроникой,- отмечает он,- позволяет говорить об организации в самом ближайшем будущем глобальной системы связи с абонентами, не "привязанными" к каким-либо наземным узлам. То есть о создании единого информационного поля, в которое сможет включиться каждый желающий в любое время и в любой точке земного шара. Это означает, что коренным образом изменится образ жизни миллионов и миллионов людей. Каждому из живущих на Земле будут доступны богатства мировой культуры - от фондов крупнейших книгохранилищ мира, залов Эрмитажа и Лувра, в которых можно "побывать" в любой момент, до фильмотек и фонотек любого государственного или частного собрания. Станет реальностью лозунг: высшее образование каждому, кто хочет его получить. Не говоря уже о возможности получить любые справочные данные, провести оперативное совещание..."

Чтобы перейти к следующему этапу освоения космоса, считает Л. Лесков, потребуется создать новые, более эффективные транспортные средства: воздушно-космические самолеты , пилотируемые и автоматические корабли, многоразовые ракеты-носители, межорбитальные буксиры большой грузоподъемности...

В 20 -50-е годы XXI века на орбитах появятся гигантские отражатели солнечного света и солнечные космические электростанции, а вслед за этим наступит пора индустриального освоения Луны. Далее ученый оперирует уже не десятилетиями, а веками. Среди следующих этапов перечисляются такие, как создание в космосе крупномасштабных сооружений, использование внеземного вещества с доставкой его к Земле, освоение и преобразование природы Марса и Венеры.

А что же дальше? И главное, что станет с людьми, навсегда расставшимися со своей планетой? Один из ведущих специалистов в области космической медицины и биологии академик О. Газенко рассматривает два сценария космического расселения: в пределах Солнечной системы и за ее границами. Если в космосе, считает ученый, удастся создать среду обитания, максимально приближенную к земной, эволюция постоянных обитателей "эфирных поселений" пойдет, видимо, так же, как и на Земле. Правда, есть вероятность, что под действием космических лучей у людей возникнут случайные наследственные изменения, и дальнейший ход эволюции станет непредсказуемым. Естественно, это может произойти только в том случае, если к тому времени не будет найдено надежных средств защиты.

Ученый допускает и такой вариант, когда основным фактором, определяющим длительную эволюцию человека, будет не радиация, а невесомость. Тогда люди, постепенно утрачивая некоторые "навязанные" им гравитацией физиологические особенности, станут иными - может быть, похожими на "бестелесные" персонажи картин испанского художника Эль Греко.

Если же человечество не ограничится завоеванием Солнечной системы и выйдет за ее пределы, тогда, считает академик, через сотни поколений бесконечные просторы Галактики окажутся заселенными отдельными колониями разумных существ, заметно отличающихся как от нас, так и друг от друга.

Но приспособится ли человек к столь необычным для него условиям жизни? Вот что говорил К. Циолковский: "...В настоящее время передовые слои человечества стремятся ставить свою жизнь все более и более в искусственные рамки, и не в этом ли заключается прогресс? Борьба с непогодой, с высокой и низкой температурой, с силой тяжести, с зверями, с вредными насекомыми и бактериями не создает ли и теперь вокруг человека обстановку чисто искусственную? В эфирном пространстве эта искусственность только дойдет до своего крайнего предела, но зато и человек будет находиться в условиях, наиболее благоприятных для себя".

Впрочем, не будем заглядывать так далеко. Вернемся к прогнозам на не столь отдаленное время. Конечно, их авторы хорошо понимают, что предлагаемые ими хронологические схемы весьма приблизительны. Поэтому и не пытаются называть конкретные сроки осуществления тех или иных проектов, уделяя главное внимание их техническому описанию. Такого же принципа будем придерживаться и мы в рассказе о перспективах внеземной деятельности нашей цивилизации.

Эта книга адресуется молодежи, "тем, кто будет читать, чтобы строить" - так обращался к своим читателям Ю. Кондратюк. Пройдут годы, и уже те, кто перелистывает сейчас эти страницы, начнут воплощать в действительность сегодняшние мечты. Именно так: "читать, чтобы строить"!

Название : Механика космического полета в элементарном изложении.

В книге в доступной форме, без применения сложного математического аппарата, но вместе с тем вполне строго излагаются основы космодинамики - науки о движении космических летательных аппаратов. В первой части рассматриваются общие вопросы, двигательные системы для космических полетов, пассивный и активный полеты в поле тяготения. Следующие части посвящены последовательно околоземным полетам, полетам к Луне, к телам Солнечной системы (к планетам, их спутникам, астероидам, кометам) и за пределы планетной системы. Особо рассматриваются проблемы пилотируемых орбитальных станций и космических кораблей. Дается представление о методах исследования и проектирования космических траекторий и различных операций: встречи на орбитах, посадки, маневры в атмосферах, в гравитационных полях планет (многопланетные полеты и т. п.), полеты с малой тягой и солнечным парусом и т. д. Приводятся элементарные формулы, позволяющие читателю самостоятельно оценить начальные массы ракет-носителей и аппаратов, стартующих с околоземной орбиты, определить благоприятные сезоны для межпланетных полетов и др. Книга содержит большой справочный числовой и исторический материал.


За годы, прошедшие после выхода в свет второго издания этой книги, космонавтика достигла новых замечательных успехов. Все большее применение находят искусственные спутники Земли для развития народного хозяйства. Резко возросло число советских космонавтов, побывавших на околоземных орбитах. Работа экипажей (в том числе интернациональных) на советской орбитальной станции «Салют» стала обыденным явлением. Продолжается успешное изучение Венеры и Марса. Стал привычным пролет Юпитера, достигнут Сатурн, впереди Уран.
Наряду с практическими достижениями опубликован ряд теоретических работ и предложено немало тем для новых разработок, интересных именно с точки зрения механики космического полета. Достаточно, например, сказать, что солнечный парус стал рассматриваться как конкурент электро-ракетных двигательных установок. Конкретизируются проекты использования космических аппаратов в так называемых точках либрации, и уже началось их осуществление. Придумано, как использовать Землю для разгона на пути к Юпитеру и Сатурну

ОГЛАВЛЕНИЕ
Предисловие к третьему изданию 8
Из предисловия ко второму изданию 10
Введение 15
§ 1. Космодинамика - теория космических полетов 15
§ 2. Основные законы механики 18
§ 3. О единицах силы и массы 20
§ 4. О системах отсчета 21
Часть первая
ОСНОВЫ РАКЕТО- И КОСМОДИНАМИКИ 22
Глава 1. Двигательные системы для космических полетов 22
§ 1. Законы ракетного движения 22
§ 2. Структура ракеты 27
§ 3. Составная ракета 29
§ 4. Термохимические ракетные двигатели 34
§ 5. Ядерные тепловые двигатели 38
§ 6. Тепловые двигатели с внешним источником энергии 41
§ 7. Электрические ракетные двигатели (ЭРД) 42
§ 8. Парусные системы 46
§ 9. Фотонный (квантовый) ракетный двигатель 48
§ 10. Классификации двигательных систем 48
Глава 2. Свободный полет в полях тяготения 54
§ 1. Силы, действующие на космический аппарат в полете 54
§ 2. Задача п тел и метод численного интегрирования 55
§ 3. Невесомость 57
§ 4. Центральное поле тяготения 59
§ 5. Траектории в центральном поле тяготения 61
§ 6. Неограниченная задача двух тел 66
§ 7. Сфера действия и приближенный метод расчета траекторий... 68
Глава 3. Активное движение космического аппарата 73
§ 1. Выход на траекторию свободного полета 73
§ 2. Активное движение в космическом пространстве 78
§ 3. Перегрузка 80
§ 4. Управление движением космического аппарата 82
§ 5. Движение космического аппарата относительно центра масс и управление им 84
Часть вторая
ОКОЛОЗЕМНЫЕ ПОЛЕТЫ 89
Глава 4. Движение искусственных спутников Земли 89
§ 1. Параметры орбиты 89
§ 2. Возмущенное движение спутника 91
§ 3. Влияние несферичности Земли 92
§ 4. Эволюция орбиты в земной атмосфере. . . ." 95
§ 5. Влияние притяжений Луны и Солнца 98
§ 6. Спутники в точках либрации 102
§ 7. Влияние давления солнечного света 106
§ 8. Движение спутника относительно земной поверхности 107
Глава 5. Активное движение в околоземном пространстве 111
§ 1. Выведение спутника на орбиту с низким перигеем 111
§ 2. Многоимпульсное выведение 113
§ 3. Изменение плоскости орбиты 117
§ 4. Спуск с орбиты 119
§ 5. Относительное движение в окрестности спутника 123
§ 6. Встреча на орбите 129
§ 7. Конечное сближение и стыковка 133
§ 8. Разгон с малой тягой до параболической скорости 136
§ 9. Изменения орбит и их коррекция с помощью малых тяг 140
§ 10. Разгон с помощью солнечного паруса 143
§ 11. Ориентация и стабилизация спутников 146
Глава 6. Использование искусственных спутников Земли "150
§ 1. Космические объекты в околоземном пространстве 150
§ 2. Исследовательские спутники 152
§ 3. Метеорологические спутники и спутники для исследования природных ресурсов Земли 159
§ 4. Спутники связи 164
§ 5. Навигационные и геодезические спутники 167
§ 6. Орбитальные энергостанции 168
Глава 7. Пилотируемые орбитальные объекты 170
§ 1. Корабли-спутники и орбитальные станции 170
§ 2. Роль орбитальных станций 176
§ 3. Искусственная тяжесть 177
§ 4. Многоразовый транспортный космический корабль (МТКК) . . 180
§ 5. Межорбитальный транспортный аппарат 185
§ 6. Эксплуатация многоразовых транспортных аппаратов 186
Часть третья
ПОЛЕТЫ К ЛУНЕ 191
Глава 8. Достижение Луны 191
§ 1. Плоская задача достижения Луны 191
§ 2. Пространственная задача достижения Луны 196
§ 3. Учет эллиптичности лунной орбиты, притяжения Луны и ее размеров 202
§ 4. Влияние гравитационных возмущений от сжатия Земли и от Солнца 205
§ 5. Точность наведения 206
§ 6. Коррекция траектории 209
§ 7. Посадка на Луну 210
§ 8. Научное значение автоматических лунных станций 217
Глава 9. Пролетные операции 221
§ 1. Пролетная траектория 221
§ 2. Сближение с возвращением к Земле 225
§ 3. Периодический облет Луны 230
§ 4. Разгонные траектории 234
§ 5. Маневрирование на пролетных траекториях 236
§ 6. Научное значение пролетных операций 237
Глава 10. Искусственный ыгутник Луны 239
§ 1. О возможности захвата Луной космического аппарата 239
§ 2. Запуск искусственного спутника Луны 241
§ 3. Орбиты спутников Луны и их эволюция 245
§ 4. Движение спутника относительно лунной поверхности.... 250
§ 5. Маневрирование спутников Луны 251
§ 6. Научное значение спутников Луны 253
Глава 11. Возвращение на Землю 256
§ 1. Траектории возвращения 256
§ 2. Вход в земную атмосферу и спуск 258
§ 3. Возвращение на Землю космических аппаратов, облетевших Луну 262
§ 4. Возвращение на Землю станций, совершивших посадки на Луне 265
Глава 12. Экспедиция на Луну 268
§ 1. Особенности 1раекторий полета человека 268
§ 2. Прямой полет Земля - Луна - Земля (первый вариант лунной экспедиции) 271
§ 3. Встреча в космосе и монтаж корабля (второй вариант лунной экспедиции) 275
§ 4. Разъединение и сближение на окололунной орбите (третий вариант лунной экспедиции) 277
§ 5. Экспедиции по программе «Аполлон» 278
§ 6. Лунная транспортная космическая система 290
§ 7. Лунные грузовые корабли с малой тягой 291
§ 8. Окололунная орбитальная станция 293
§ 9. Перспективы использования Луны 298
Часть четвертая
МЕЖПЛАНЕТНЫЕ ПОЛЕТЫ 302
Глава 13. Межпланетные полеты с большой тягой 302
§ 1. Главные особенности межпланетного полета 302
§ 2. Движение внутри сферы действия Земли 306
§ 3. Гелиоцентрическое движение вне сферы действия Земли.... 312
§ 4. Гомановские и параболические перелеты 315
§ 5. Движение внутри сферы действия планеты-цели 321
§ 6. Межпланетный пертурбационный маневр 325
§ 7. Искусственные спутники планет 329
§ 8. Возмущения межпланетных траекторий 335
§ 9. Коррекция межпланетных траекторий 337
Глава 14. Межпланетные полеты с малой тягой 341
§ 1. Траектории достижения планет 341
§ 2. Перелеты на орбиты искусственных спутников планет 343
§ 3. Солнечный парус 346
§ 4. Разработки космических аппаратов с двигателями малой тяги. 348
Глава 15, Зондирование межпланетного пространства 350
§ 1. Одноимпульсные орбиты искусственных планет 350
§ 2. Полеты вне плоскости эклиптики 353
§ 3. Поворот плоскости орбиты с помощью солнечной ЭРДУ.... 355
§ 4. Двухимпульсные орбиты искусственных планет 356
§ 5. Переход через бесконечность 359
§ 6. Выведение искусственной планеты в точку либрации 360
§ 7. Научное значение искусственных планет 361
Глава 16. Полеты к Марсу 363
§ 1. Траектории в случае упрощенной модели планетных орбит. . . 363
§ 2. Влияние эксцентриситета и наклона орбиты Марса 367
§ 3. Географические условия старта к Марсу 370
§ 4. Посадка на Марс 371
§ 5. Искусственные спутники Марса 374
§ 6. Полеты на спутники Марса - Фобос и Деймос 375
§ 7. Облет Марса с возвращением к Земле 377
§ 8. Автоматические станции исследуют Марс 378
§ 9. Результаты исследований Марса 381
Глава 17. Полеты к Венере 386
§ 1. Достижение Венеры 386
§ 2. Посадка и искусственный спутник Венеры 387
§ 3. Облет Венеры 387
§ 4. Автоматические станции исследуют Венеру 389
§ 5. Результаты исследований Венеры 394
Глава 18. Полеты к Меркурию 396
§ 1. Достижение Маркурия 396
§ 2. Посадка и искусственный спутник Меркурия 396
§ 3. Полет к Меркурию при попутном облете Венеры 398
§ 4. Полет с солнечно-электрическим двигателем 399
§ 5. Результаты исследований Меркурия 400
Глава 19. Полеты к юпитерианским планетам 402
§ 1. Планеты, совсем не похожие на нашу 402
§ 2. Прямые перелеты 403
§ 3. Полеты к Юпитеру и Сатурну через планеты земной группы. . 405
§ 4. Пертурбационные маневры в сферах действия планет группы Юпитера 407
§ 5. Через Юпитер - к Солнцу и подальше от плоскости эклиптики 410
§ 6. Искусственный спутник Юпитера 412
§ 7. Искусственные спутники других планет группы Юпитера... 416
§ 8. Посадки на естественные спутники 417
§ 9. Зондирование атмосфер юпитерианских планет. Посадка на Плутон 418
§ 10. Полеты с малой тягой 419
§ 11. Исследования Юпитера и Сатурна 420
§ 12. Результаты исследований в системах Юпитера и Сатурна. . . 424
Глава 20. Полеты к астероидам 429
§ 1. Пролет астероида 429
§ 2. Встреча с астероидом 430
§ 3. Выход на орбиту вокруг астероида 431
§ 4. Посадка на астероид и возвращение на Землю 432
Глава 21. Полеты к кометам 434
§ 1. Импульсные полеты 434
§ 2. Полеты с малой тягой 437
§ 3. Операции вблизи ядра кометы 439
Глава 22. Межпланетные экспедиции 440
§ 1. Они только отложены 440
§ 2. Особенности межпланетных экспедиций 441
§ 3. Спуск на Землю при возвращении из экспедиции 444
§ 4. Безостановочные пилотируемые облеты планет 447
§ 5. Экспедиции с остановками при прямых симметричных перелетах 448
§ 6. Экспедиции с траекториями возвращения, несимметричными траекториям прибытия 453
§ 7. Операции на околопланетных орбитах, пролетных траекториях и поверхностях 455
§ 8. Экспедиции на астероиды 458
§ 9. Использование кораблей с малой тягой 460
§ 10. Немного о будущем 465
Часть пятая
ПОЛЕТЫ ЗА ПРЕДЕЛЫ СОЛНЕЧНОЙ СИСТЕМЫ 467
Глава 23. Преддверие полета к звездам 467
§ 1. Заплутонное пространство 467
§ 2. Полеты с большой тягой 468
§ 3. Полеты с малой тягой 469
Глава 24. Межзвездные полеты 470
§ 1 Астронавтика - составная часть космонавтики 470
§ 2. Фотонная ракета - средство осуществления межзвездных полетов 471
§ 3. Обобщенная формула Циолковского 472
§ 4. Продолжительности полетов 474
§ 5. О «собственных» скоростях звездолета 477
§ 6. Мечта или реальность? 478
Послесловие 481
Дополнение при корректуре. Космический лифт 484
Приложение I. Перечень таблиц в тексте книги 487
Приложение II. К вычислению начальных масс ракетных систем 487
Литература 490
Указатель имен и библиографических ссылок 503
Предметный указатель 506
Указатель наименований космических летательных аппаратов и проектов 509