Как решать рациональные уравнения с двумя переменными. Видеоурок «Рациональные уравнения

Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применяется в том случае, когда вы не можете записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда вам дано рациональное уравнение с 3 или более дробями (в случае двух дробей лучше применить умножение крест-накрест).

  • Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ – это наименьшее число, которое делится нацело на каждый знаменатель.

    • Иногда НОЗ – очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
    • Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x - 3)/9, то НОЗ = 8*9 = 72.
    • Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и тоже число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).

    • Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
    • Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
  • Найдите х. Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.

    • В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить 2 дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
    • В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x - 3 + 2x -2, или 15х = х - 5. Решите и получите: х = -5/14.
  • \(\bullet\) Рациональное уравнение - это уравнение, представимое в виде \[\dfrac{P(x)}{Q(x)}=0\] где \(P(x), \ Q(x)\) - многочлены (сумма “иксов” в различных степенях, умноженных на различные числа).
    Выражение в левой части уравнения называется рациональным выражением.
    ОДЗ (область допустимых значений) рационального уравнения – это все значения \(x\) , при которых знаменатель НЕ обращается в нуль, то есть \(Q(x)\ne 0\) .
    \(\bullet\) Например, уравнения \[\dfrac{x+2}{x-3}=0,\qquad \dfrac 2{x^2-1}=3, \qquad x^5-3x=2\] являются рациональными уравнениями.
    В первом уравнении ОДЗ – это все \(x\) , такие что \(x\ne 3\) (пишут \(x\in (-\infty;3)\cup(3;+\infty)\) ); во втором уравнении – это все \(x\) , такие что \(x\ne -1; x\ne 1\) (пишут \(x\in (-\infty;-1)\cup(-1;1)\cup(1;+\infty)\) ); а в третьем уравнении никаких ограничений на ОДЗ нет, то есть ОДЗ – это все \(x\) (пишут \(x\in\mathbb{R}\) ). \(\bullet\) Теоремы:
    1) Произведение двух множителей равно нулю тогда и только тогда, когда один из них равен нулю, а другой при этом не теряет смысла, следовательно, уравнение \(f(x)\cdot g(x)=0\) равносильно системе \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &f(x)=0\\ &g(x)=0 \end{aligned} \end{gathered} \right.\\ \text{ОДЗ уравнения} \end{cases}\] 2) Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю, следовательно, уравнение \(\dfrac{f(x)}{g(x)}=0\) равносильно системе уравнений \[\begin{cases} f(x)=0\\ g(x)\ne 0 \end{cases}\] \(\bullet\) Рассмотрим несколько примеров.

    1) Решите уравнение \(x+1=\dfrac 2x\) . Найдем ОДЗ данного уравнения – это \(x\ne 0\) (так как \(x\) находится в знаменателе).
    Значит, ОДЗ можно записать так: .
    Перенесем все слагаемые в одну часть и приведем к общему знаменателю: \[\dfrac{(x+1)\cdot x}x-\dfrac 2x=0\quad\Leftrightarrow\quad \dfrac{x^2+x-2}x=0\quad\Leftrightarrow\quad \begin{cases} x^2+x-2=0\\x\ne 0\end{cases}\] Решением первого уравнения системы будут \(x=-2, x=1\) . Видим, что оба корня ненулевые. Следовательно, ответ: \(x\in \{-2;1\}\) .

    2) Решите уравнение \(\left(\dfrac4x - 2\right)\cdot (x^2-x)=0\) . Найдем ОДЗ данного уравнения. Видим, что единственное значение \(x\) , при котором левая часть не имеет смысла – это \(x=0\) . Значит, ОДЗ можно записать так: \(x\in (-\infty;0)\cup(0;+\infty)\) .
    Таким образом, данное уравнение равносильно системе:

    \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x-2=0\\ &x^2-x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x=2\\ &x(x-1)=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1\\ &x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1 \end{aligned} \end{gathered} \right.\] Действительно, несмотря на то, что \(x=0\) - корень второго множителя, если подставить \(x=0\) в изначальное уравнение, то оно не будет иметь смысла, т.к. не определено выражение \(\dfrac 40\) .
    Таким образом, решением данного уравнения являются \(x\in \{1;2\}\) .

    3) Решите уравнение \[\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1}\] В нашем уравнении \(4x^2-1\ne 0\) , откуда \((2x-1)(2x+1)\ne 0\) , то есть \(x\ne -\frac12; \frac12\) .
    Перенесем все слагаемые в левую часть и приведем к общему знаменателю:

    \(\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1} \quad \Leftrightarrow \quad \dfrac{x^2+4x-3+x+x^2}{4x^2-1}=0\quad \Leftrightarrow \quad \dfrac{2x^2+5x-3}{4x^2-1}=0 \quad \Leftrightarrow\)

    \(\Leftrightarrow \quad \begin{cases} 2x^2+5x-3=0\\ 4x^2-1\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} (2x-1)(x+3)=0\\ (2x-1)(2x+1)\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered} \begin{aligned} &x=\dfrac12\\ &x=-3 \end{aligned}\end{gathered} \right.\\ x\ne \dfrac 12\\ x\ne -\dfrac 12 \end{cases} \quad \Leftrightarrow \quad x=-3\)

    Ответ: \(x\in \{-3\}\) .

    Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

    Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

    Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

    Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

    Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

    Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

    Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

    Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

    Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

    Презентация и урок на тему: "Рациональные уравнения. Алгоритм и примеры решения рациональных уравнений"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
    Пособие к учебнику Макарычева Ю.Н. Пособие к учебнику Мордковича А.Г.

    Знакомство с иррациональными уравнениями

    Ребята, мы научились решать квадратные уравнения. Но математика только ими не ограничивается. Сегодня мы научимся решать рациональные уравнения. Понятие рациональных уравнений во многом схоже с понятием рациональных чисел. Только помимо чисел теперь у нас введена некоторая переменная $х$. И таким образом мы получаем выражение, в котором присутствуют операции сложения, вычитания, умножения, деления и возведения в целую степень.

    Пусть $r(x)$ – это рациональное выражение . Такое выражение может представлять из себя простой многочлен от переменной $х$ или отношение многочленов (вводится операция деления, как для рациональных чисел).
    Уравнение $r(x)=0$ называется рациональным уравнением .
    Любое уравнение вида $p(x)=q(x)$, где $p(x)$ и $q(x)$ – рациональные выражения, также будет являться рациональным уравнением .

    Рассмотрим примеры решения рациональных уравнений.

    Пример 1.
    Решить уравнение: $\frac{5x-3}{x-3}=\frac{2x-3}{x}$.

    Решение.
    Перенесем все выражения в левую часть: $\frac{5x-3}{x-3}-\frac{2x-3}{x}=0$.
    Если бы в левой части уравнения были представлены обычные числа, то мы бы привели две дроби к общему знаменателю.
    Давайте так и поступим: $\frac{(5x-3)*x}{(x-3)*x}-\frac{(2x-3)*(x-3)}{(x-3)*x}=\frac{5x^2-3x-(2x^2-6x-3x+9)}{(x-3)*x}=\frac{3x^2+6x-9}{(x-3)*x}=\frac{3(x^2+2x-3)}{(x-3)*x}$.
    Получили уравнение: $\frac{3(x^2+2x-3)}{(x-3)*x}=0$.

    Дробь равна нулю, тогда и только тогда, когда числитель дроби равен нулю, а знаменатель отличен от нуля. Тогда отдельно приравняем числитель к нулю и найдем корни числителя.
    $3(x^2+2x-3)=0$ или $x^2+2x-3=0$.
    $x_{1,2}=\frac{-2±\sqrt{4-4*(-3)}}{2}=\frac{-2±4}{2}=1;-3$.
    Теперь проверим знаменатель дроби: $(x-3)*x≠0$.
    Произведение двух чисел равно нулю, когда хотя бы одно из этих чисел равно нулю. Тогда: $x≠0$ или $x-3≠0$.
    $x≠0$ или $x≠3$.
    Корни, полученные в числителе и знаменателе, не совпадают. Значит в ответ записываем оба корня числителя.
    Ответ: $х=1$ или $х=-3$.

    Если вдруг, один из корней числителя совпал с корнем знаменателя, то его следует исключить. Такие корни называются посторонними!

    Алгоритм решения рациональных уравнений:

    1. Все выражения, содержащиеся в уравнении, перенести в левую сторону от знака равно.
    2. Преобразовать эту часть уравнения к алгебраической дроби: $\frac{p(x)}{q(x)}=0$.
    3. Приравнять полученный числитель к нулю, то есть решить уравнение $p(x)=0$.
    4. Приравнять знаменатель к нулю и решить полученное уравнение. Если корни знаменателя совпали с корнями числителя, то их следует исключить из ответа.

    Пример 2.
    Решите уравнение: $\frac{3x}{x-1}+\frac{4}{x+1}=\frac{6}{x^2-1}$.

    Решение.
    Решим согласно пунктам алгоритма.
    1. $\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{x^2-1}=0$.
    2. $\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{x^2-1}=\frac{3x}{x-1}+\frac{4}{x+1}-\frac{6}{(x-1)(x+1)}= \frac{3x(x+1)+4(x-1)-6}{(x-1)(x+1)}=$ $=\frac{3x^2+3x+4x-4-6}{(x-1)(x+1)}=\frac{3x^2+7x-10}{(x-1)(x+1)}$.
    $\frac{3x^2+7x-10}{(x-1)(x+1)}=0$.
    3. Приравняем числитель к нулю: $3x^2+7x-10=0$.
    $x_{1,2}=\frac{-7±\sqrt{49-4*3*(-10)}}{6}=\frac{-7±13}{6}=-3\frac{1}{3};1$.
    4. Приравняем знаменатель к нулю:
    $(x-1)(x+1)=0$.
    $x=1$ и $x=-1$.
    Один из корней $х=1$ совпал с корнем из числителя, тогда мы его в ответ не записываем.
    Ответ: $х=-1$.

    Решать рациональные уравнения удобно с помощью метода замены переменных. Давайте это продемонстрируем.

    Пример 3.
    Решить уравнение: $x^4+12x^2-64=0$.

    Решение.
    Введем замену: $t=x^2$.
    Тогда наше уравнение примет вид:
    $t^2+12t-64=0$ - обычное квадратное уравнение.
    $t_{1,2}=\frac{-12±\sqrt{12^2-4*(-64)}}{2}=\frac{-12±20}{2}=-16; 4$.
    Введем обратную замену: $x^2=4$ или $x^2=-16$.
    Корнями первого уравнения является пара чисел $х=±2$. Второе - не имеет корней.
    Ответ: $х=±2$.

    Пример 4.
    Решить уравнение: $x^2+x+1=\frac{15}{x^2+x+3}$.
    Решение.
    Введем новую переменную: $t=x^2+x+1$.
    Тогда уравнение примет вид: $t=\frac{15}{t+2}$.
    Дальше будем действовать по алгоритму.
    1. $t-\frac{15}{t+2}=0$.
    2. $\frac{t^2+2t-15}{t+2}=0$.
    3. $t^2+2t-15=0$.
    $t_{1,2}=\frac{-2±\sqrt{4-4*(-15)}}{2}=\frac{-2±\sqrt{64}}{2}=\frac{-2±8}{2}=-5; 3$.
    4. $t≠-2$ - корни не совпадают.
    Введем обратную замену.
    $x^2+x+1=-5$.
    $x^2+x+1=3$.
    Решим каждое уравнение по отдельности:
    $x^2+x+6=0$.
    $x_{1,2}=\frac{-1±\sqrt{1-4*(-6)}}{2}=\frac{-1±\sqrt{-23}}{2}$ - нет корней.
    И второе уравнение: $x^2+x-2=0$.
    Корнями данного уравнения будут числа $х=-2$ и $х=1$.
    Ответ: $х=-2$ и $х=1$.

    Пример 5.
    Решить уравнение: $x^2+\frac{1}{x^2} +x+\frac{1}{x}=4$.

    Решение.
    Введем замену: $t=x+\frac{1}{x}$.
    Тогда:
    $t^2=x^2+2+\frac{1}{x^2}$ или $x^2+\frac{1}{x^2}=t^2-2$.
    Получили уравнение: $t^2-2+t=4$.
    $t^2+t-6=0$.
    Корнями данного уравнения является пара:
    $t=-3$ и $t=2$.
    Введем обратную замену:
    $x+\frac{1}{x}=-3$.
    $x+\frac{1}{x}=2$.
    Решим по отдельности.
    $x+\frac{1}{x}+3=0$.
    $\frac{x^2+3x+1}{x}=0$.
    $x_{1,2}=\frac{-3±\sqrt{9-4}}{2}=\frac{-3±\sqrt{5}}{2}$.
    Решим второе уравнение:
    $x+\frac{1}{x}-2=0$.
    $\frac{x^2-2x+1}{x}=0$.
    $\frac{(x-1)^2}{x}=0$.
    Корнем этого уравнения является число $х=1$.
    Ответ: $x=\frac{-3±\sqrt{5}}{2}$, $x=1$.

    Задачи для самостоятельного решения

    Решить уравнения:

    1. $\frac{3x+2}{x}=\frac{2x+3}{x+2}$.

    2. $\frac{5x}{x+2}-\frac{20}{x^2+2x}=\frac{4}{x}$.
    3. $x^4-7x^2-18=0$.
    4. $2x^2+x+2=\frac{8}{2x^2+x+4}$.
    5. $(x+2)(x+3)(x+4)(x+5)=3$.

    § 1 Целое и дробное рациональные уравнение

    В этом уроке разберем такие понятия, как рациональное уравнение, рациональное выражение, целое выражение, дробное выражение. Рассмотрим решение рациональных уравнений.

    Рациональным уравнением называют уравнение, в котором левая и правая части являются рациональными выражениями.

    Рациональные выражения бывают:

    Дробные.

    Целое выражение составлено из чисел, переменных, целых степеней с помощью действий сложения, вычитания, умножения, а также деления на число, отличное от нуля.

    Например:

    В дробных выражениях есть деление на переменную или выражение с переменной. Например:

    Дробное выражение не при всех значениях входящих в него переменных имеет смысл. Например, выражение

    при х = -9 не имеет смысла, так как при х = -9 знаменатель обращается в нуль.

    Значит, рациональное уравнение может быть целым и дробным.

    Целое рациональное уравнение - это рациональное уравнение, в котором левая и правая части - целые выражения.

    Например:

    Дробное рациональное уравнение - это рациональное уравнение, в котором или левая, или правая части - дробные выражения.

    Например:

    § 2 Решение целого рационального уравнения

    Рассмотрим решение целого рационального уравнения.

    Например:

    Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него дробей.

    Для этого:

    1. найдем общий знаменатель для знаменателей 2, 3, 6. Он равен 6;

    2. найдем дополнительный множитель для каждой дроби. Для этого общий знаменатель 6 делим на каждый знаменатель

    дополнительный множитель для дроби

    дополнительный множитель для дроби

    3. умножим числители дробей на соответствующие им дополнительные множители. Таким образом, получим уравнение

    которое равносильно данному уравнению

    Слева раскроем скобки, правую часть перенесем налево, изменив знак слагаемого при переносе на противоположный.

    Приведем подобные члены многочлена и получим

    Видим, что уравнение линейное.

    Решив его, найдем, что х = 0,5.

    § 3 Решение дробного рационального уравнения

    Рассмотрим решение дробного рационального уравнения.

    Например:

    1.Умножим обе части уравнения на наименьший общий знаменатель знаменателей входящих в него рациональных дробей.

    Найдем общий знаменатель для знаменателей х + 7 и х - 1.

    Он равен их произведению (х + 7)(х - 1).

    2.Найдем дополнительный множитель для каждой рациональной дроби.

    Для этого общий знаменатель (х + 7)(х - 1) делим на каждый знаменатель. Дополнительный множитель для дроби

    равен х - 1,

    дополнительный множитель для дроби

    равен х+7.

    3.Умножим числители дробей на соответствующие им дополнительные множители.

    Получим уравнение (2х - 1)(х - 1) = (3х + 4)(х + 7), которое равносильно данному уравнению

    4.Слева и справа умножим двучлен на двучлен и получим следующее уравнение

    5.Правую часть перенесем налево, изменив знак каждого слагаемого при переносе на противоположный:

    6.Приведем подобные члены многочлена:

    7.Можно обе части разделить на -1. Получим квадратное уравнение:

    8.Решив его, найдем корни

    Так как в уравнении

    левая и правая части - дробные выражения, а в дробных выражениях при некоторых значениях переменных знаменатель может обратиться в нуль, то необходимо проверить, не обращается ли в нуль при найденных х1 и х2 общий знаменатель.

    При х = -27 общий знаменатель (х + 7)(х - 1) не обращается в нуль, при х = -1 общий знаменатель также не равен нулю.

    Следовательно, оба корня -27 и -1 являются корнями уравнения.

    При решении дробного рационального уравнения лучше сразу указать область допустимых значений. Исключить те значения, при которых общий знаменатель обращается в нуль.

    Рассмотрим еще один пример решения дробного рационального уравнения.

    Например, решим уравнение

    Знаменатель дроби правой части уравнения разложим на множители

    Получим уравнение

    Найдем общий знаменатель для знаменателей (х - 5), х, х(х - 5).

    Им будет выражение х(х - 5).

    теперь найдем область допустимых значений уравнения

    Для этого общий знаменатель приравняем к нулю х(х - 5) = 0.

    Получим уравнение, решив которое, найдем, что при х = 0 или при х = 5 общий знаменатель обращается в нуль.

    Значит, х = 0 или х = 5 не могут быть корнями нашего уравнения.

    Теперь можно найти дополнительные множители.

    Дополнительным множителем для рациональной дроби

    дополнительным множителем для дроби

    будет (х - 5),

    а дополнительный множитель дроби

    Числители умножим на соответствующие дополнительные множители.

    Получим уравнение х(х - 3) + 1(х - 5) = 1(х + 5).

    Раскроем скобки слева и справа, х2 - 3х + х - 5 = х + 5.

    Перенесем слагаемые справа налево, изменив знак переносимых слагаемых:

    Х2 - 3х + х - 5 - х - 5 = 0

    И после приведения подобных членов получим квадратное уравнение х2 - 3х - 10 = 0. Решив его, найдем корни х1 = -2; х2 = 5.

    Но мы уже выяснили, что при х = 5 общий знаменатель х(х - 5) обращается в нуль. Следовательно, корнем нашего уравнения

    будет х = -2.

    § 4 Краткие итоги урока

    Важно запомнить:

    При решении дробных рациональных уравнений надо поступить следующим образом:

    1.Найти общий знаменатель дробей входящих в уравнение. При этом если знаменатели дробей можно разложить на множители, то разложить их на множители и затем найти общий знаменатель.

    2.Умножить обе части уравнения на общий знаменатель: найти дополнительные множители, умножить числители на дополнительные множители.

    3.Решить получившееся целое уравнение.

    4.Исключить из его корней те, которые обращают в нуль общий знаменатель.

    Список использованной литературы:

    1. Макарычев Ю.Н., Н. Г. Миндюк, Нешков К.И., Суворова С.Б. / Под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
    2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
    3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
    4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.

    В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений , которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

    Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

    У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

    Итак, начнем.

    1 . (x-1)(x-7)(x-4)(x+2)=40

    Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой - число.

    1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

    2. Перемножим их.

    3. Введем замену переменной.

    В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

    В этом месте замена переменной становится очевидной:

    Получаем уравнение

    Ответ:

    2 .

    Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

    1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

    2. Перемножаем каждую пару скобок.

    3. Из каждого множителя выносим за скобку х.

    4. Делим обе части уравнения на .

    5. Вводим замену переменной.

    В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

    Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

    Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

    Получим уравнение:

    Ответ:

    3 .

    Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

    Разделим числитель и знаменатель каждой дроби на х:

    Теперь можем ввести замену переменной:

    Получим уравнение относительно переменной t:

    4 .

    Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

    Чтобы его решить,

    1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

    2. Сгруппируем слагаемые таким образом:

    3. В каждой группе вынесем за скобку общий множитель:

    4. Введем замену:

    5. Выразим через t выражение :

    Отсюда

    Получим уравнение относительно t:

    Ответ:

    5. Однородные уравнения.

    Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

    Однородные уравнения имеют такую структуру:

    В этом равенстве А, В и С - числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень (в данном случае степень одночленов равна 2), и свободный член отсутствует.

    Чтобы решить однородное уравнение, разделим обе части на

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Пойдем первым путем. Получим уравнение:

    Теперь мы вводим замену переменной:

    Упростим выражение и получим биквадратное уравнение относительно t:

    Ответ: или

    7 .

    Это уравнение имеет такую структуру:

    Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

    Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

    Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

    Теперь прикинем, что нам удобнее иметь - квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

    Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение: