Сокращение дробей с иксами. Алгебраические дроби

Калькулятора онлайн выполняет сокращение алгебраических дробей в соответствии с правилом сокращения дробей: замена исходной дроби равной дробью, но с меньшими числителем и знаменателем, т.е. одновременное деление числителя и знаменателя дроби на их общий наибольший общий делитель (НОД). Также калькулятор выводит подробное решение, которое поможет понять последовательность выполнения сокращения.

Дано:

Решение:

Выполнение сокращения дробей

проверка возможности выполнения сокращения алгебраической дроби

1) Определение наибольшего общего делителя (НОД) числителя и знаменателя дроби

определение наибольшего общего делителя (НОД) числителя и знаменателя алгебраической дроби

2) Сокращение числителя и знаменателя дроби

сокращение числителя и знаменателя алгебраической дроби

3) Выделение целой части дроби

выделение целой части алгебраической дроби

4) Перевод алгебраической дроби в десятичную дробь

перевод алгебраической дроби в десятичную дробь


Помощь на развитие проекта сайт

Уважаемый Посетитель сайта.
Если Вам не удалось найти, то что Вы искали - обязательно напишите об этом в комментариях, чего не хватает сейчас сайту. Это поможет нам понять в каком направлении необходимо дальше двигаться, а другие посетители смогут в скором времени получить необходимый материал.
Если же сайт оказался Ваме полезен - подари проекту сайт всего 2 ₽ и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!


I. Порядок действий при сокращении алгебраической дроби калькулятором онлайн:

  1. Чтобы выполнить сокращение алгебраической дроби введите в соответствующие поля значения числителя, знаменателя дроби. Если дробь смешанная, то также заполните поле, соответствующее целой части дроби. Если дробь простая, то оставьте поле целой части пустым.
  2. Чтобы задать отрицательную дробь, поставьте знак минус в целой части дроби.
  3. В зависимости от задаваемой алгебраической дроби автоматически выполняется следующая последовательность действий:
  • определение наибольшего общего делителя (НОД) числителя и знаменателя дроби ;
  • сокращение числителя и знаменателя дроби на НОД ;
  • выделение целой части дроби , если числитель итоговой дроби больше знаменателя.
  • перевод итоговой алгебраической дроби в десятичную дробь с округлением до сотых.
  • В результате сокращения может получиться неправильная дробь. В этом случае у итоговой неправильной дроби будет выделена целая часть и итоговая дробь будет переведена в правильную дробь.
  • II. Для справки:

    Дробь - число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенная дробь (простая дробь) записывается в виде двух чисел (числитель дроби и знаменатель дроби), разделенных горизонтальной чертой (дробной чертой), обозначающей знак деления. числитель дроби - число, стоящее над дробной чертой. Числитель показывает, сколько долей взяли у целого. знаменатель дроби - число, стоящее под дробной чертой. Знаменатель показывает, на сколько равных долей разделено целое. простая дробь - дробь, не имеющая целой части. Простая дробь может быть правильной или неправильной. правильная дробь - дробь, у которой числитель меньше знаменателя, поэтому правильная дробь всегда меньше единицы. Пример правильных дроби: 8/7, 11/19, 16/17. неправильная дробь - дробь, у которой числитель больше или равен знаменателю, поэтому неправильная дробь всегда больше единицы или равна ей. Пример неправильных дроби: 7/6, 8/7, 13/13. смешанная дробь - число, в состав которого входит целое число и правильная дробь, и обозначает сумму этого целого числа и правильной дроби. Любая смешанная дробь может быть преобразована в неправильную простую дробь. Пример смешанных дробей: 1¼, 2½, 4¾.

    III. Примечание:

    1. Блок исходных данных выделен желтым цветом , блок промежуточных вычислений выделен голубым цветом , блок решения выделен зеленым цветом .
    2. Для сложения, вычитания, умножения и деления обыкновенных или смешанных дробей воспользуйтесь онлайн калькулятором дробей с подробным решением.

    Деление и числителя и знаменателя дроби на их общий делитель , отличный от единицы, называют сокращением дроби .

    Чтобы сократить обыкновенную дробь, нужно разделить ее числитель и знаменатель на одно и то же натуральное число.

    Это число является наибольшим общим делителем числителя и знаменателя данной дроби.

    Возможны следующие формы записи решения примеров на сокращение обыкновенных дробей.

    Учащийся вправе выбрать любую форму записи.

    Примеры. Упростить дроби.

    Сократим дробь на 3 (делим числитель на 3;

    делим знаменатель на 3).

    Сокращаем дробь на 7.

    Выполняем указанные действия в числителе и знаменателе дроби.

    Полученную дробь сокращаем на 5.

    Сократим данную дробь 4) на 5·7³ — наибольший общий делитель (НОД) числителя и знаменателя, который состоит из общих множителей числителя и знаменателя, взятых в степени с наименьшим показателем.

    Разложим числитель и знаменатель этой дроби на простые множители.

    Получаем: 756=2²·3³·7 и 1176=2³·3·7² .

    Определяем НОД (наибольший общий делитель) числителя и знаменателя дроби 5) .

    Это произведение общих множителей, взятых с наименьшими показателями.

    НОД(756; 1176)=2²·3·7 .

    Делим числитель и знаменатель данной дроби на их НОД, т. е. на 2²·3·7 получаем несократимую дробь 9/14 .

    А можно было записать разложения числителя и знаменателя в виде произведения простых множителей, не применяя понятие степени, а затем произвести сокращение дроби, зачеркивая одинаковые множители в числителе и знаменателе. Когда одинаковых множителей не останется — перемножаем оставшиеся множители отдельно в числителе и отдельно в знаменателе и выписываем получившуюся дробь 9/14 .

    И, наконец, можно было сокращать данную дробь 5) постепенно, применяя признаки деления чисел и к числителю и к знаменателю дроби. Рассуждаем так: числа 756 и 1176 оканчиваются четной цифрой, значит, оба делятся на 2 . Сокращаем дробь на 2 . Числитель и знаменатель новой дроби — числа 378 и 588 также делятся на 2 . Сокращаем дробь на 2 . Замечаем, что число 294 — четное, а 189 — нечетное, и сокращение на 2 уже невозможно. Проверим признак делимости чисел 189 и 294 на 3 .

    (1+8+9)=18 делится на 3 и (2+9+4)=15 делится на 3, следовательно, и сами числа 189 и 294 делятся на 3 . Сокращаем дробь на 3 . Далее, 63 делится на 3, а 98 — нет. Перебираем другие простые множители. Оба числа делятся на 7 . Сокращаем дробь на 7 и получаем несократимую дробь 9/14 .

    В этой статье мы подробно остановимся на сокращении алгебраических дробей . Сначала разберемся, что понимают под термином «сокращение алгебраической дроби», и выясним, всегда ли алгебраическая дробь сократима. Дальше приведем правило, позволяющее проводить это преобразование. Наконец, рассмотрим решения характерных примеров, которые позволят уяснить все тонкости процесса.

    Навигация по странице.

    Что значит сократить алгебраическую дробь?

    Изучая , мы говорили про их сокращение. мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9 .

    Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен , в частности, одночлен или число.

    Например, алгебраическую дробь можно сократить на число 3 , что даст дробь . Также можно выполнить сокращение на переменную x , что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x , а также на любой из многочленов x+2·y , 3·x+6·y , x 2 +2·x·y или 3·x 2 +6·x·y .

    Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби.

    Любая ли алгебраическая дробь подлежит сокращению?

    Нам известно, что обыкновенные дроби подразделяются на . Несократимые дроби не имеют отличных от единицы общих множителей в числителе и знаменателе, следовательно, не подлежат сокращению.

    Алгебраические дроби также могут иметь общие множители числителя и знаменателя, а могут и не иметь. При наличии общих множителей возможно сокращение алгебраической дроби. Если же общих множителей нет, то упрощение алгебраической дроби посредством ее сокращения невозможно.

    В общем случае по внешнему виду алгебраической дроби достаточно сложно определить, возможно ли выполнить ее сокращение. Несомненно, в некоторых случаях общие множители числителя и знаменателя очевидны. Например, хорошо видно, что числитель и знаменатель алгебраической дроби имеют общий множитель 3 . Также несложно заметить, что алгебраическую дробь можно сократить на x , на y или сразу на x·y . Но намного чаще общего множителя числителя и знаменателя алгебраической дроби сразу не видно, а еще чаще – его просто нет. К примеру, дробь возможно сократить на x−1 , но этот общий множитель явно не присутствует в записи. А алгебраическую дробь сократить невозможно, так как ее числитель и знаменатель не имеют общих множителей.

    Вообще, вопрос о сократимости алгебраической дроби очень непростой. И порой проще решить задачу, работая с алгебраической дробью в исходном виде, чем выяснить, можно ли эту дробь предварительно сократить. Но все же существуют преобразования, которые в некоторых случаях позволяют с относительно небольшими усилиями найти общие множители числителя и знаменателя, если таковые имеются, либо сделать вывод о несократимости исходной алгебраической дроби. Эта информация будет раскрыта в следующем пункте.

    Правило сокращения алгебраических дробей

    Информация предыдущих пунктов позволяет естественным образом воспринять следующее правило сокращения алгебраических дробей , которое состоит из двух шагов:

    • сначала находятся общие множители числителя и знаменателя исходной дроби;
    • если таковые имеются, то проводится сокращение на эти множители.

    Указанные шаги озвученного правила нуждаются в разъяснении.

    Самый удобный способ отыскания общих заключается в разложении на множители многочленов , находящихся в числителе и знаменателе исходной алгебраической дроби. При этом сразу становятся видны общие множители числителя и знаменателя, либо становится видно, что общих множителей нет.

    Если общих множителей нет, то можно делать вывод о несократимости алгебраической дроби. Если же общие множители обнаружены, то на втором шаге они сокращаются. В результате получается новая дробь более простого вида.

    В основе правила сокращения алгебраических дробей лежит основное свойство алгебраической дроби , которое выражается равенством , где a , b и c – некоторые многочлены, причем b и c – ненулевые. На первом шаге исходная алгебраическая дробь приводится к виду , из которого становится виден общий множитель c , а на втором шаге выполняется сокращение – переход к дроби .

    Переходим к решению примеров с использованием данного правила. На них мы и разберем все возможные нюансы, возникающие при разложении числителя и знаменателя алгебраической дроби на множители и последующем сокращении.

    Характерные примеры

    Для начала нужно сказать про сокращение алгебраических дробей, числитель и знаменатель которых одинаковые. Такие дроби тождественно равны единице на всей ОДЗ входящих в нее переменных, например,
    и т.п.

    Теперь не помешает вспомнить, как выполняется сокращение обыкновенных дробей – ведь они являются частным случаем алгебраических дробей. Натуральные числа в числителе и знаменателе обыкновенной дроби , после чего общие множители сокращаются (при их наличии). Например, . Произведение одинаковых простых множителей можно записывать в виде степеней, а при сокращении пользоваться . В этом случае решение выглядело бы так: , здесь мы числитель и знаменатель разделили на общий множитель 2 2 ·3 . Или для большей наглядности на основании свойств умножения и деления решение представляют в виде .

    По абсолютно аналогичным принципам проводится сокращение алгебраических дробей, в числителе и знаменателе которых находятся одночлены с целыми коэффициентами.

    Пример.

    Сократите алгебраическую дробь .

    Решение.

    Можно представить числитель и знаменатель исходной алгебраической дроби в виде произведения простых множителей и переменных, после чего провести сокращение:

    Но более рационально решение записать в виде выражения со степенями:

    Ответ:

    .

    Что касается сокращения алгебраических дробей, имеющих дробные числовые коэффициенты в числителе и знаменателе, то можно поступать двояко: либо отдельно выполнять деление этих дробных коэффициентов, либо предварительно избавляться от дробных коэффициентов, умножив числитель и знаменатель на некоторое натуральное число. Про последнее преобразование мы говорили в статье приведение алгебраической дроби к новому знаменателю , его можно проводить в силу основного свойства алгебраической дроби. Разберемся с этим на примере.

    Пример.

    Выполните сокращение дроби .

    Решение.

    Можно сократить дробь следующим образом: .

    А можно было предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на знаменателей этих коэффициентов, то есть, на НОК(5, 10)=10 . В этом случае имеем .

    Ответ:

    .

    Можно переходить к алгебраическим дробям общего вида, у которых в числителе и знаменателе могут быть как числа и одночлены, так и многочлены.

    При сокращении таких дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель алгебраической дроби разложить на множители.

    Пример.

    Сократите рациональную дробь .

    Решение.

    Для этого разложим на множители многочлены в числителе и знаменателе. Начнем с вынесения за скобки: . Очевидно, выражения в скобках можно преобразовать, используя

    Прежде чем перейти к изучению алгебраических дробей рекомендуем вспомнить, как работать с обыкновенными дробями.

    Любая дробь, в которой есть буквенный множитель, называется алгебраической дробью.

    Примеры алгебраических дробей .

    Как и у обыкновенной дроби, в алгебраической дроби есть числитель (наверху) и знаменатель (внизу).

    Сокращение алгебраической дроби

    Алгебраическую дробь можно сокращать . При сокращении пользуются правилами сокращения обыкновенных дробей.

    Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.

    Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.

    Рассмотрим пример сокращения алгебраической дроби .

    Определим наименьшую степень, в которой стоит одночлен « a » . Наименьшая степень для одночлена « a » находится в знаменателе - это вторая степень.

    Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.

    Напоминаем, что любая буква или число в нулевой степени - это единица.

    Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.

    Краткая запись сокращения алгебраической дроби выглядит следующим образом.

    Сокращать можно только одинаковые буквенные множители.

    Нельзя сокращать

    Можно сокращать

    Другие примеры сокращения алгебраических дробей.

    Как сократить дробь с многочленами

    Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.

    Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!

    Ни в коем случае нельзя сокращать часть многочлена внутри скобок!

    Неправильно

    Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.

    После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.

    Примеры сокращения алгебраических дробей с многочленами.

    Вынесение общего множителя при сокращении дробей

    Чтобы в алгебраических дробях появились одинаковые многочлены иногда нужно вынести общий множитель за скобки.

    В таком виде сократить алгебраическую дробь нельзя, так как многочлен
    « (3f + k) » можно сократить только со многочленом « (3f + k) ».

    Поэтому, чтобы в числителе получить « (3f + k) », вынесем общий множитель « 5 ».

    Сокращение дробей с помощью формул сокращенного умножения

    В других примерах для сокращения алгебраических дробей требуется
    применение формул сокращенного умножения.

    В первоначальном виде сократить алгебраическую дробь нельзя, так как нет одинаковых многочленов.

    Но если применить формулу разности квадратов для многочлена « (a 2 − b 2) », то одинаковые многочлены появятся.

    Другие примеры сокращения алгебраических дробей с помощью формул сокращенного умножения.

    Сокращение алгебраических (рациональных) дробей основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

    Сокращать можно только множители!

    Члены многочленов сокращать нельзя!

    Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.

    Рассмотрим примеры сокращения дробей.

    В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

    Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это - 12. После сокращения от 24 остается 2, от 36 - 3.

    Степени сокращаем на степень с наименьшим показателем. Сократить дробь - значит, разделить числитель и знаменатель на один и тот же делитель, а при делении степеней показатели вычитаем.

    a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

    b и b сокращаем на b, полученные в результате единицы не пишем.

    c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ - единица (ее не пишем). Таким образом,

    Числитель и знаменатель данной алгебраической дроби - многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо многочлены разложить на множители. В числителе есть общий множитель 4x. Выносим его за скобки:

    И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе - 1. По 1 свойству алгебраических дробей, дробь равна 4x.

    Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

    В числителе - полный квадрат суммы, в знаменателе - разность квадратов. После разложения по формулам сокращенного умножения получаем:

    Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

    В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе - формула разности кубов:

    В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

    Многочлен в числителе состоит из 4 слагаемых. Группируем первое слагаемое со вторым, третье - с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

    В числителе вынесем за скобки общий множитель (x+2):

    Сокращаем дробь на (x+2):

    Сокращать можем только множители! Чтобы сократить данную дробь, нужно стоящие в числителе и знаменателе многочлены разложить на множители. В числителе общий множитель a³, в знаменателе - a⁵. Вынесем их за скобки:

    Множители - степени с одинаковым основанием a³ и a⁵ - сокращаем на a³. От a³ остается 1, мы ее не пишем, от a⁵ остается a². В числителе выражение в скобках можно разложить как разность квадратов:

    Сокращаем дробь на общий делитель (1+a):

    А как сокращать дроби вида

    в которых стоящие в числителе и знаменателе выражения отличаются только знаками?

    Примеры сокращения таких дробей мы рассмотрим в следующий раз.

    2 комментария

    Очень хороший сайт,каждый день им пользуюсь, и помогает.
    До того как я наткнулся на этот сайт,я не умел многое решать по алгебре, геометрии,но благодаря этому сайту мои оценки а 3 поднялись на 4-5.
    Теперь я могу смело сдавать ОГЭ,и нн боятся что его не сдам!
    Учитесь,и у Вас все получится!

    Витя, желаю Вам успехов в учебе и высоких результатов на экзаменах!

    www.algebraclass.ru

    Сокращение алгебраических дробей правило

    Сокращение алгебраических дробей

    Новое понятие в математике редко возникает «из ничего», «на пустом месте». Оно появляется тогда, когда в нем ощущается объективная необходимость. Именно так появились в математике отрицательные числа, так появились обыкновенные и десятичные алгебраической дроби .

    Предпосылки для введения нового понятия «алгебраическая дробь» у нас имеются. Давайте вернемcя к § 12. Обсуждая там деление одночлена на одночлен, мы рассмотрели ряд примеров. Выделим два из них.

    1. Разделить одночлен 36а 3 b 5 на одночлен 4ab 2 (см. пример 1в) из §12).
    Решали мы его так. Вместо записи 36а 3 b 5: 4аb 2 использовали черту дроби:

    Это позволило вместо записей 36: 4, а 3: а, b 5: b 2 также использовать черту дроби, что сделало решение примера более наглядным:

    2. Разделить одночлен 4x 3 на одночлен 2ху (см. пример 1 д) из § 12). Действуя по тому же образцу, мы получили:

    В § 12 мы отметили, что одночлен 4x 3 не удалось разделить на одночлен 2ху так, чтобы получился одночлен . Но ведь математические модели реальных ситуаций могут содержать операцию деления любых одночленов, не обязательно таких, что один делится на другой. Предвидя это, математики ввели новое понятие - понятие алгебраической дроби. В частности, алгебраическая дробь. Теперь вернемся к § 18. Обсуждая там операцию деления многочлена на одночлен, мы отметили, что она не всегда выполнима. Так, в примере 2 из § 18 речь шла о делении двучлена 6х 3 — 24x 2 на одночлен 6х 2 . Эта операция оказалась выполнимой и в результате мы получили двучлен х — 4. Значит, Иными словами, алгебраическое выражение удалось заменить более простым выражением - многочленом х — 4.

    В то же время в примере 3 из § 18 не удалось разделить многочлен 8a 3 + Ьа 2b — b на 2а 2 , т. е. выражение не удалось заменить более простым выражением, пришлось так и оставить его в виде алгебраической дроби.

    Что же касается операции деления многочлена на многочлен , то мы о ней фактически ничего не говорили. Единственное, что мы можем сейчас сказать: один многочлен можно разделить на другой, если этот другой многочлен является одним из множителей в разложении первого многочлена на множители.

    Например, х 3 — 1 = (х — 1) (х 2 + х + 1). Значит, х 3 — 1 можно разделить на х 2 + х + 1, получится х — 1; х 3 — 1 можно разделить на х — 1,

    получится х 2 + х + 1.
    многочленов Р и Q. При этом используют запись
    где Р - числитель, Q - знаменатель алгебраической дроби.
    Примеры алгебраических дробей:

    Иногда алгебраическую дробь удается заменить многочленом. Например, как мы уже установили ранее,

    (многочлен 6x 3 — 24x 2 удалось разделить на 6x 2 , при этом в частном получается x — 4); мы также отмечали, что

    Но так бывает сравнительно редко.

    Впрочем, похожая ситуация уже встречалась вам - при изучении обыкновенных дробей. Например, дробь - можно заменить целым числом 4, а дробь - целым числом 5. Однако дробь - целым числом заменить не удается, хотя эту дробь можно сократить, разделив числитель и знаменатель на число 8 - общий множитель числителя и знаменателя:
    Точно так же можно сокращать алгебраические дроби, разделив одновременно числитель и знаменатель дроби на их общий множетель . А для этого надо разложить и числитель, и знаменатель дроби на множители. Здесь нам и понадобится все то, что мы так долго обсуждали в этой главе.

    Пример. Сократить алгебраическую дробь:

    Решение, а) Найдем общий множитель для одночленов
    12х 3 у 4 и 8х 2 у 5 так, как мы делали в § 20. Получим 4х 2 у 4 . Тогда 12x 3 y 4 = 4x 2 y 4 Зх; 8x 2 y 5 = 4x 2 y 4 2у.
    Значит,


    Числитель и знаменатель заданной алгебраической дроби сократили на общий множитель 4х 2 у 4 .
    Решение этого примера можно записать по-другому:

    б) Чтобы сократить дробь, разложим ее числитель и знаменатель на множители. Получим:

    (дробь сократили на общий множитель а + b).

    А теперь вернитесь к замечанию 2 из § 1. Видите, данное там обещание мы наконец-то смогли выполнить.
    в) Имеем:

    (сократили дробь на общий множитель числителя и знаменателя, т. е. на х (x — у))

    Итак, для того чтобы сократить алгебраическую к дробь, нужно прежде всего разложить на множители ее числитель и знаменатель. Так что ваш успех в этом новом деле (сокращении алгебраических дробей) в основном зависит от того, как вы усвоили материал предыдущих параграфов этой главы.

    А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

    Если у вас есть исправления или предложения к данному уроку, напишите нам.

    Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

    Сокращение алгебраических дробей: правило, примеры.

    Продолжаем изучение темы преобразование алгебраических дробей. В этой статье мы подробно остановимся на сокращении алгебраических дробей . Сначала разберемся, что понимают под термином «сокращение алгебраической дроби», и выясним, всегда ли алгебраическая дробь сократима. Дальше приведем правило, позволяющее проводить это преобразование. Наконец, рассмотрим решения характерных примеров, которые позволят уяснить все тонкости процесса.

    Навигация по странице.

    Что значит сократить алгебраическую дробь?

    Изучая обыкновенные дроби, мы говорили про их сокращение. Сокращением обыкновенной дроби мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9 .

    Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен, в частности, одночлен или число.

    Например, алгебраическую дробь можно сократить на число 3 , что даст дробь . Также можно выполнить сокращение на переменную x , что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x , а также на любой из многочленов x+2·y , 3·x+6·y , x 2 +2·x·y или 3·x 2 +6·x·y .

    Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби.

    Любая ли алгебраическая дробь подлежит сокращению?

    Нам известно, что обыкновенные дроби подразделяются на сократимые и несократимые дроби. Несократимые дроби не имеют отличных от единицы общих множителей в числителе и знаменателе, следовательно, не подлежат сокращению.

    Алгебраические дроби также могут иметь общие множители числителя и знаменателя, а могут и не иметь. При наличии общих множителей возможно сокращение алгебраической дроби. Если же общих множителей нет, то упрощение алгебраической дроби посредством ее сокращения невозможно.

    В общем случае по внешнему виду алгебраической дроби достаточно сложно определить, возможно ли выполнить ее сокращение. Несомненно, в некоторых случаях общие множители числителя и знаменателя очевидны. Например, хорошо видно, что числитель и знаменатель алгебраической дроби имеют общий множитель 3 . Также несложно заметить, что алгебраическую дробь можно сократить на x , на y или сразу на x·y . Но намного чаще общего множителя числителя и знаменателя алгебраической дроби сразу не видно, а еще чаще – его просто нет. К примеру, дробь возможно сократить на x−1 , но этот общий множитель явно не присутствует в записи. А алгебраическую дробь сократить невозможно, так как ее числитель и знаменатель не имеют общих множителей.

    Вообще, вопрос о сократимости алгебраической дроби очень непростой. И порой проще решить задачу, работая с алгебраической дробью в исходном виде, чем выяснить, можно ли эту дробь предварительно сократить. Но все же существуют преобразования, которые в некоторых случаях позволяют с относительно небольшими усилиями найти общие множители числителя и знаменателя, если таковые имеются, либо сделать вывод о несократимости исходной алгебраической дроби. Эта информация будет раскрыта в следующем пункте.

    Правило сокращения алгебраических дробей

    Информация предыдущих пунктов позволяет естественным образом воспринять следующее правило сокращения алгебраических дробей , которое состоит из двух шагов:

    • сначала находятся общие множители числителя и знаменателя исходной дроби;
    • если таковые имеются, то проводится сокращение на эти множители.

    Указанные шаги озвученного правила нуждаются в разъяснении.

    Самый удобный способ отыскания общих заключается в разложении на множители многочленов, находящихся в числителе и знаменателе исходной алгебраической дроби. При этом сразу становятся видны общие множители числителя и знаменателя, либо становится видно, что общих множителей нет.

    Если общих множителей нет, то можно делать вывод о несократимости алгебраической дроби. Если же общие множители обнаружены, то на втором шаге они сокращаются. В результате получается новая дробь более простого вида.

    В основе правила сокращения алгебраических дробей лежит основное свойство алгебраической дроби, которое выражается равенством , где a , b и c – некоторые многочлены, причем b и c – ненулевые. На первом шаге исходная алгебраическая дробь приводится к виду , из которого становится виден общий множитель c , а на втором шаге выполняется сокращение – переход к дроби .

    Переходим к решению примеров с использованием данного правила. На них мы и разберем все возможные нюансы, возникающие при разложении числителя и знаменателя алгебраической дроби на множители и последующем сокращении.

    Характерные примеры

    Для начала нужно сказать про сокращение алгебраических дробей, числитель и знаменатель которых одинаковые. Такие дроби тождественно равны единице на всей ОДЗ входящих в нее переменных, например,
    и т.п.

    Теперь не помешает вспомнить, как выполняется сокращение обыкновенных дробей – ведь они являются частным случаем алгебраических дробей. Натуральные числа в числителе и знаменателе обыкновенной дроби раскрадываются на простые множители, после чего общие множители сокращаются (при их наличии). Например, . Произведение одинаковых простых множителей можно записывать в виде степеней, а при сокращении пользоваться свойством деления степеней с одинаковыми основаниями. В этом случае решение выглядело бы так: , здесь мы числитель и знаменатель разделили на общий множитель 2 2 ·3 . Или для большей наглядности на основании свойств умножения и деления решение представляют в виде .

    По абсолютно аналогичным принципам проводится сокращение алгебраических дробей, в числителе и знаменателе которых находятся одночлены с целыми коэффициентами.

    Сократите алгебраическую дробь .

    Можно представить числитель и знаменатель исходной алгебраической дроби в виде произведения простых множителей и переменных, после чего провести сокращение:

    Но более рационально решение записать в виде выражения со степенями:

    .

    Что касается сокращения алгебраических дробей, имеющих дробные числовые коэффициенты в числителе и знаменателе, то можно поступать двояко: либо отдельно выполнять деление этих дробных коэффициентов, либо предварительно избавляться от дробных коэффициентов, умножив числитель и знаменатель на некоторое натуральное число. Про последнее преобразование мы говорили в статье приведение алгебраической дроби к новому знаменателю, его можно проводить в силу основного свойства алгебраической дроби. Разберемся с этим на примере.

    Выполните сокращение дроби .

    Можно сократить дробь следующим образом: .

    А можно было предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, то есть, на НОК(5, 10)=10 . В этом случае имеем .

    .

    Можно переходить к алгебраическим дробям общего вида, у которых в числителе и знаменателе могут быть как числа и одночлены, так и многочлены.

    При сокращении таких дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель алгебраической дроби разложить на множители.

    Сократите рациональную дробь .

    Для этого разложим на множители многочлены в числителе и знаменателе. Начнем с вынесения за скобки: . Очевидно, выражения в скобках можно преобразовать, используя формулы сокращенного умножения: . Теперь хорошо видно, что можно провести сокращение дроби на общий множитель b 2 ·(a+7) . Сделаем это .

    Краткое решение без пояснений обычно записывают в виде цепочки равенств:

    .

    Иногда общие множители могут быть скрыты числовыми коэффициентами. Поэтому при сокращении рациональных дробей целесообразно числовые множители при старших степенях числителя и знаменателя вынести за скобки.

    Сократите дробь , если это возможно.

    На первый взгляд числитель и знаменатель не имеют общего множителя. Но все же, попробуем выполнить некоторые преобразования. Во-первых, можно вынести за скобки множитель x в числителе: .

    Теперь проглядывается некоторая схожесть выражения в скобках и выражения в знаменателе за счет x 2 ·y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

    После проделанных преобразований виден общий множитель, на который и проводим сокращение. Имеем

    .

    Завершая разговор о сокращении рациональных дробей заметим, что успех во многом зависит от умения раскладывать многочлены на множители.

    www.cleverstudents.ru

    Математика

    Строка навигации

    Сокращение алгебраических дробей

    Опираясь на вышеуказанное свойство, мы можем упрощать алгебраические дроби так же, как это делают с арифметическими дробями, сокращая их.

    Сокращение дробей состоит в том, что числителя и знаменателя дроби делят на одно и то же число.

    Если алгебраическая дробь одночленная, то числитель и знаменатель представляется в виде произведения нескольких множителей, и сразу видно, на какие одинаковые числа можно их разделить:

    Ту же дробь мы можем написать подробнее: . Мы видим, что последовательно можно делить и числителя и знаменателя 4 раза на a , т. е. в конце-концов разделить каждого из них на a 4 . Поэтому ; также и т. п. Итак, если в числителе и знаменателе имеются множителями различные степени одной и той же буквы, то можно сократить эту дробь на меньшую степень этой буквы.

    Если дробь многочленная, то приходится сначала эти многочлены разложить, если возможно, на множители, и тогда явится возможность увидать, на какие одинаковые множители можно делить и числителя и знаменателя.

    …. числитель легко раскладывается на множители «по формуле» – он представляет собой квадрат разности двух чисел, а именно (x – 3) 2 . Знаменатель к формулам не подходит и придется его разлагать приемом, употребляемым для квадратного трехчлена: подыщем 2 числа, так, чтобы их сумма равнялась –1 и их произведение = –6, – эти числа суть –3 и + 2; тогда x 2 – x – 6 = x 2 – 3x + 2x – 6 = x (x – 3) + 2 (x – 3) = (x – 3) (x + 2).

    Популярное:

    • Краткие правила игры в шахматы ШАХМАТНАЯ ДОСКА И НОТАЦИЯ Шахматы - игра для двоих. Один игрок (Белые) использует фигуры белого цвета, а второй игрок (Черные) обычно играет фигурами черного цвета. Доска разделена на 64 маленьких […]
    • Упрощение выражений Свойства сложения, вычитания, умножения и деления полезны тем, что позволяют преобразовывать суммы и произведения в удобные выражения для вычислений. Научимся, как можно с помощью этих свойств упрощать […]
    • Инерция правила Динамика – это раздел механики, в котором изучают движение тел под действием приложенных к ним сил. В биомеханике также рассматривают взаимодействие между телом человека и внешним окружением, между звеньями тела, […]
    • Буквы е (ё), о после шипящих в корне слова. Правило и примеры Написание букв «е» (ё) или «о» после шипя­щих в корне слов выбе­рем, вос­поль­зо­вав­шись соот­вет­ству­ю­щим пра­ви­лом рус­ской орфо­гра­фии. Посмотрим, как […]
    • Механические и электромагнитные колебания 4. Колебания и волны 1. Гармонические колебания величины s описываются уравнением s = 0,02 cos (6πt + π/3), м. Определите: 1) амплитуду колебаний; 2) циклическую частоту; 3) частоту […]
    • Оствальда закон разбавления 4.6 Закон разбавления Оствальда Степень диссоциации (αдис) и константа диссоциации (Кдис) слабого электролита количественно связаны между собой. Выведем уравнение этой связи на примере слабой […]
    • Формулировка и содержание приказа МО РФ №365 от 2002 года В данном приказе содержится информация о праве дополнительных суток отпуска в зависимости от различных условий и аспектов прохождения службы. Данный приказ умалчивается […]
    • Налагать дисциплинарные взыскания имеют право Глава 3. ДИСЦИПЛИНАРНЫЕ ВЗЫСКАНИЯ Права командиров (начальников) налагать дисциплинарные взыскания на подчиненных им прапорщиков и мичманов 63. Командир взвода (группы) и […]

    В этой статье мы подробно разберем, как проводится сокращение дробей . Сначала обговорим, что называют сокращением дроби. После этого поговорим о приведении сократимой дроби к несократимому виду. Дальше получим правило сокращения дробей и, наконец, рассмотрим примеры применения этого правила.

    Навигация по странице.

    Что значит сократить дробь?

    Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби . По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.

    Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы . Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби , полученная дробь равна исходной.

    Для примера, проведем сокращение обыкновенной дроби 8/24 , разделив ее числитель и знаменатель на 2 . Иными словами, сократим дробь 8/24 на 2 . Так как 8:2=4 и 24:2=12 , то в результате такого сокращения получается дробь 4/12 , которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .

    Приведение обыкновенных дробей к несократимому виду

    Обычно конечной целью сокращения дроби является получение несократимой дроби, которая равна исходной сократимой дроби. Эта цель может быть достигнута, если провести сокращение исходной сократимой дроби на ее числителя и знаменателя. В результате такого сокращения всегда получается несократимая дробь. Действительно, дробь является несократимой, так как из известно, что и - . Здесь же скажем, что наибольший общий делитель числителя и знаменателя дроби является наибольшим числом, на которое можно сократить эту дробь.

    Итак, приведение обыкновенной дроби к несократимому виду заключается в делении числителя и знаменателя исходной сократимой дроби на их НОД.

    Разберем пример, для чего вернемся к дроби 8/24 и сократим ее на наибольший общий делитель чисел 8 и 24 , который равен 8 . Так как 8:8=1 и 24:8=3 , то мы приходим к несократимой дроби 1/3 . Итак, .

    Заметим, что под фразой «сократите дробь» часто подразумевают приведение исходной дроби именно к несократимому виду. Другими словами, сокращением дроби очень часто называют деление числителя и знаменателя на их наибольший общий делитель (а не на любой их общий делитель).

    Как сократить дробь? Правило и примеры сокращения дробей

    Осталось лишь разобрать правило сокращения дробей, которое и объясняет, как сократить данную дробь.

    Правило сокращения дробей состоит из двух шагов:

    • во-первых, находится НОД числителя и знаменателя дроби;
    • во-вторых, проводится деление числителя и знаменателя дроби на их НОД, что дает несократимую дробь, равную исходной.

    Разберем пример сокращения дроби по озвученному правилу.

    Пример.

    Сократите дробь 182/195 .

    Решение.

    Выполним оба шага, предписанные правилом сокращения дроби.

    Сначала находим НОД(182, 195) . Наиболее удобно воспользоваться алгоритмом Евклида (смотрите ): 195=182·1+13 , 182=13·14 , то есть, НОД(182, 195)=13 .

    Теперь делим числитель и знаменатель дроби 182/195 на 13 , при этом получаем несократимую дробь 14/15 , которая равна исходной дроби. На этом сокращение дроби закончено.

    Кратко решение можно записать так: .

    Ответ:

    На этом с сокращением дробей можно и закончить. Но для полноты картины рассмотрим еще два способа сокращения дробей, которые обычно применяются в легких случаях.

    Иногда числитель и знаменатель сокращаемой дроби несложно . Сократить дробь в этом случае очень просто: нужно лишь убрать все общие множители из числителя и знаменателя.

    Стоит отметить, что этот способ напрямую следует из правила сокращения дробей, так как произведение всех общих простых множителей числителя и знаменателя равно их наибольшему общему делителю.

    Разберем решение примера.

    Пример.

    Сократите дробь 360/2 940 .

    Решение.

    Разложим числитель и знаменатель на простые множители: 360=2·2·2·3·3·5 и 2 940=2·2·3·5·7·7 . Таким образом, .

    Теперь избавляемся от общих множителей в числителе и знаменателе, для удобства, их просто зачеркиваем: .

    Наконец, перемножаем оставшиеся множители: , и сокращение дроби закончено.

    Вот краткая запись решения: .

    Ответ:

    Рассмотрим еще один способ сокращения дроби, который состоит в последовательном сокращении. Здесь на каждом шаге проводится сокращение дроби на некоторый общий делитель числителя и знаменателя, который либо очевиден, либо легко определяется с помощью