Как разделить отрицательное число на положительное. Деление отрицательных чисел, правило, примеры

Теперь давайте разберемся с умножением и делением .

Предположим, нам нужно умножить +3 на -4. Как это сделать?

Давайте рассмотрим такой случай. Три человека залезли в долги, и у каждого по 4 доллара долга. Чему равен общий долг? Для того чтобы его найти, надо сложить все три долга: 4 доллара + 4 доллара + 4 доллара = 12 долларов. Мы с вами решили, что сложение трех чисел 4 обозначается как 3×4. Поскольку в данном случае мы говорим о долге, перед 4 стоит знак «-». Мы знаем, что общий долг равен 12 долларам, так что теперь наша задача имеет вид 3х(-4)=-12.

Мы получим тот же результат, если по условию задачи каждый из четырех человек имеет долг по 3 доллара. Другими словами, (+4)х(-3)=-12. А поскольку порядок сомножителей значения не имеет, получаем (-4)х(+3)=-12 и (+4)х(-3)=-12.

Давайте обобщим результаты. При перемножении одного положительного и одного отрицательного числа результат всегда будет отрицательным числом . Численная величина ответа будет той же самой, как и в случае положительных чисел. Произведение (+4)х(+3)=+12. Присутствие знака «-» влияет только на знак, но не влияет на численную величину.

А как перемножить два отрицательных числа?

К сожалению, на эту тему очень трудно придумать подходящий пример из жизни. Легко себе представить долг в сумме 3 или 4 доллара, но совершенно невозможно вообразить -4 или -3 человека, которые залезли в долги.

Пожалуй, мы пойдем другим путем. В умножении при изменении знака одного из множителей меняется знак произведения. Если мы меняем знаки у обоих множителей, мы должны дважды сменить знак произведения , сначала с положительного на отрицательный, а затем наоборот, с отрицательного на положительный, то есть у произведения будет первоначальный знак.

Следовательно, вполне логично, хотя немного странно, что (-3)х(-4)=+12.

Положение знака при умножении изменяется таким образом:

  • положительное число х положительное число = положительное число;
  • отрицательное число х положительное число = отрицательное число;
  • положительное число х отрицательное число = отрицательное число;
  • отрицательное число х отрицательное число = положительное число.

Иначе говоря, перемножая два числа с одинаковыми знаками, мы получаем положительное число . Перемножая два числа с разными знаками, мы получаем отрицательное число .

Такое же правило справедливо и для действия противоположного умножению – для .

Вы легко можете в этом убедиться, проведя обратные операции умножения . Если в каждом из примеров, приведенных выше, вы умножите частное на делитель, то получите делимое, и убедитесь, что оно имеет тот же самый знак, например (-3)х(-4)=(+12).

Поскольку скоро зима, то пора уже подумать о том, в что переобуть своего железного коня, что бы не скользить по льду и чувствовать себя уверено на зимних дорогах. Можно, например, взять шины йокогама на сайте: mvo.ru или какие-то другие, главное, что бы качественный, больше информации и цены вы можете узнать на сайте Mvo.ru.

В этой статье я расскажу о том, как правильно находить остаток от деления отрицательных чисел . Этой теме, к сожалению, уделяется очень мало внимания в школе, хотя для понимания учеником базовых основ математики она чрезвычайно важна. Именно поэтому, как репетитор по математике, на своих занятиях я разбираю это материал с учениками во всех подробностях. Это значительно упрощает дальнейшую подготовку к ЕГЭ, ОГЭ, вступительным экзаменам и олимпиадам по математике.

Итак, приступим. Чтобы разделить друг на друга два целых числа с остатком, нужно воспользоваться следующей теоремой:

Для любых целых чисел и , причём , найдётся единственная пара целых чисел и , таких что , где .

Здесь — делимое, — делитель, — неполное частное, — остаток. Сразу обращаем внимание, что остаток — это неотрицательное число. Понятно, что условие возникает потому, что деление на нуль невозможно.

Звучит довольно сложно, но на самом деле в этой теореме нет ничего сложного. Чтобы во всём разобраться, перейдём к примерам.

Примеры нахождения остатка от деления отрицательных чисел

Пример 1. Деление с остатком положительного целого числа на положительное целое число.

Допустим, что требуется разделить с остатком 27 на 4. Вопрос состоит в том, сколько раз число 4 содержится в числе 27? Но мы знаем, что нет такого целого числа, на которое можно умножить 4, чтобы получить 27. Поэтому вопрос нужно переформулировать. На какое число нужно умножить 4, чтобы получить число, максимально близкое к 27, но не превзойти его? Очевидно, что это число 6. Если 4 умножить на 6, то получится 24. До исходного делимого 27 не хватает 3. Следовательно, остаток от деления 27 на 4 составляет 3:

Пример 2. Деление с остатком отрицательного целого числа на положительное целое число.

Что если требуется найти остаток от деления отрицательного целого числа -15 на положительное целое число 4? Начнём с того, что неполное частное должно получиться отрицательным, поскольку при делении отрицательного числа на положительное, результат получается отрицательным. Кто-нибудь может предположить, что неполное частное в данном случае должно быть равно -3. Но в этом случае, умножив -3 на 4, мы получим -12. И чтобы получить исходное делимое -15, нужно к результату -12 прибавить число -3, которое не может быть остатком, потому что остаток не может быть отрицательным!

Поэтому в данном случае неполное частное равно -4. В этом случае, умножая -4 на делитель 4, мы получаем -16. И теперь, чтобы получить исходное делимое -15, нужно к этому результату прибавить число 1. Оно неотрицательно и меньше модуля делителя (то есть 4). То есть оно и является остатком:

Пример 3 . Деление положительного целого числа на отрицательное целое число.

Рассмотрим теперь пример деления с остатком положительного целого числа 113 на отрицательное целое число -3. Неполное частное, как и в предыдущем примере, должно быть отрицательным, потому что при делении положительного числа на отрицательное, результат отрицателен. Давайте думать, чему конкретно равно неполное частное. Очевидно, что оно равно -37. Действительно, при умножении -37 на -3 получается 111. Теперь, чтобы получить исходное делимое, нужно прибавить к этому результату число 2, которое неотрицательно и меньше модуля делителя (то есть модуля -3, что равно 3). Итак, наш ответ:

Пример 4 . Деление с остатком отрицательного целого числа на отрицательное целое число.

Ну и последний пример. Отрицательное целое число -15 требуется поделить с остатком на отрицательное целое число -7. Неполное частное должно быть положительно по знаку, потому что при делении отрицательных чисел результат получается положительным. И оно равно 3. Действительно, умножая 3 на -7, получаем -21. Теперь к этому числу нужно прибавить положительное и меньшее модуля -7 (то есть 7) число 6, чтобы получить наше исходное делимое -15. Следовательно, остаток от деления отрицательных чисел -15 на -7 равен:

Проверьте, насколько хорошо вы поняли этот урок. Найдите самостоятельно остаток от деления отрицательных чисел:

в) -114 на -4.

Свои ответы пишите в комментариях, я их проверю.

Материал подготовил , Сергей Валерьевич


В данной статье дается подробный обзор деления чисел с разными знаками . Сначала приведено правило деления чисел с разными знаками. Ниже разобраны примеры деления положительных чисел на отрицательные и отрицательных чисел на положительные.

Навигация по странице.

Правило деления чисел с разными знаками

В статье деление целых чисел было получено правило деления целых чисел с разными знаками . Его можно распространить и на рациональные числа , и на действительные числа , повторив все рассуждения из указанной статьи.

Итак, правило деления чисел с разными знаками имеет следующую формулировку: чтобы разделить положительное число на отрицательное или отрицательное число на положительное, надо делимого разделить на модуль делителя, и перед полученным числом поставить знак минус.

Запишем это правило деления с помощью букв. Если числа a и b имеют разные знаки, то справедлива формула a:b=−|a|:|b| .

Из озвученного правила понятно, что результатом деления чисел с разными знаками является отрицательное число. Действительно, так как модуль делимого и модуль делителя есть положительнее числа, то их частное есть положительное число, а знак минус делает это число отрицательным.

Отметим, что рассмотренное правило сводит деление чисел с разными знаками к делению положительных чисел.

Можно привести другую формулировку правила деления чисел с разными знаками: чтобы разделить число a на число b , нужно число a умножить на число b −1 , обратное числу b . То есть, a:b=a·b −1 .

Это правило можно использовать, когда есть возможность выходить за пределы множества целых чисел (так как далеко не каждое целое число имеет обратное). Иными словами, оно применимо на множестве рациональных, а также на множестве действительных чисел.

Понятно, это правило деления чисел с разными знаками позволяет от деления перейти к умножению.

Это же правило используется при делении отрицательных чисел .

Осталось рассмотреть, как данное правило деления чисел с разными знаками применяется при решении примеров.

Примеры деления чисел с разными знаками

Рассмотрим решения нескольких характерных примеров деления чисел с разными знаками , чтобы усвоить принцип применения правил из предыдущего пункта.

Пример.

Разделите отрицательное число −35 на положительное число 7 .

Решение.

Правило деления чисел с разными знаками предписывает сначала найти модули делимого и делителя. Модуль числа −35 равен 35 , а модуль числа 7 равен 7 . Теперь нам нужно разделить модуль делимого на модуль делителя, то есть, надо разделить 35 на 7 . Вспомнив, как выполняется деление натуральных чисел , получаем 35:7=5 . Остался последний шаг правила деления чисел с разными знаками – поставить минус перед полученным числом, имеем −5 .

Вот все решение: .

Можно было исходить из другой формулировки правила деления чисел с разными знаками. В этом случае сначала находим число, обратное делителю 7 . Этим числом является обыкновенная дробь 1/7 . Таким образом, . Осталось выполнить умножение чисел с разными знаками : . Очевидно, мы пришли к такому же результату.

Ответ:

(−35):7=−5 .

Пример.

Вычислите частное 8:(−60) .

Решение.

По правилу деления чисел с разными знаками имеем 8:(−60)=−(|8|:|−60|)=−(8:60) . Полученному выражению соответствует отрицательная обыкновенная дробь (смотрите знак деления как черта дроби), можно провести сокращение дроби на 4 , получаем .

Запишем все решение кратко: .

Ответ:

.

При делении дробных рациональных чисел с разными знаками их обычно делимое и делитель представляют в виде обыкновенных дробей. Это связано с тем, что с числами в другой записи (например, в десятичной) не всегда удобно выполнять деление.

Пример.

Решение.

Модуль делимого равен , а модуль делителя равен 0,(23) . Чтобы провести деление модуля делимого на модуль делителя, перейдем к обыкновенным дробям.

Осуществим перевод смешанного числа в обыкновенную дробь : , а также

В данной статье дадим определение деления отрицательного числа на отрицательное, сформулируем и обоснуем правило, приведем примеры деления отрицательных чисел и разберем ход их решения.

Деление отрицательных чисел. Правило

Напомним, в чем суть операции деления. Данное действие представляет собой нахождение неизвестного множителя по известному произведению и известному другому множителю. Число с называется частным от деления чисел a и b , если верно произведение c · b = a . При этом, a ÷ b = c .

Правило деления отрицательных чисел

Частное ои деления одного отрицательного числа на другое отрицательное число равно частному от деления модулей этих чисел.

Пусть a и b - отрицательные числа. Тогда

a ÷ b = a ÷ b .

Данное правило сводит деление двух отрицательных чисел к делению положительных чисел. Оно справедливо не только для целых чисел, но также для рациональных и действительных чисел. Результат деления отрицательного числа на отрицательное есть всегда положительное число.

Приведем еще одну формулировку данного правила, подходящую для рациональных и действительных чисел. Она дается с помощью взаимно-обратных чисел и гласит: для деления отрицательного числа a на число undefined умножить на число b - 1 , обратное числу b .

a ÷ b = a · b - 1 .

Это же правило, сводящее деление к умножению, можно применять также и для деления чисел с разными знаками.

Равенство a ÷ b = a · b - 1 можно доказать, используя свойство умножения действительных чисел и определение взаимно обратных чисел. Запишем равенства:

a · b - 1 · b = a · b - 1 · b = a · 1 = a .

В силу определения операции деления, данное равенство доказывает, что есть частное от деления числа на число b.
Перейдем к рассмотрению примеров.

Начнем с простых случаяв, переходя к более сложным.

Пример 1. Как делить отрицательные числа

Разделим - 18 на - 3 .
Модули делителя и делимого соответственно равны 3 и 18 . Запишем:

18 ÷ - 3 = - 18 ÷ - 3 = 18 ÷ 3 = 6 .

Пример 2. Как делить отрицательные числа

Разделим - 5 на - 2 .
Аналогично, записываем по правилу:

5 ÷ - 2 = - 5 ÷ - 2 = 5 ÷ 2 = 5 2 = 2 1 2 .

Такой же результат получится, если использовать вторую формурировку правила с обратным числом.

5 ÷ - 2 = - 5 · - 1 2 = 5 · 1 2 = 5 2 = 2 1 2 .

Деля дробные рациональные числа удобнее всего представлять их в виде обыкновенных дробей. Однако, можно делить и конечные десятичные дроби.

Пример 3. Как делить отрицательные числа

Разделим - 0 , 004 на - 0 , 25 .

Сначала записываем модули этих чисел: 0 , 004 и 0 , 25 .

Теперь можно выбрать один из двух способов:

  1. Разделить десятичные дроби столбиком.
  2. Перейти к обыкновенным дробям и выполнить деление.

Разберем оба способа.

1. Выполняя деление десятичных дробей столбиком, перенесем запятую на две цифры вправо.

Ответ: - 0 , 004 ÷ 0 , 25 = 0 , 016

2. Теперь приведем решение с переводом десятичных дробей в обыкновенные.

0 , 004 = 4 1000 ; 0 , 25 = 25 100 0 , 004 ÷ 0 , 25 = 4 1000 ÷ 25 100 = 4 1000 · 100 25 = 4 250 = 0 , 016

Полученные результаты совпадают.

В заключение отметим, что если делимое и делитель являются иррациональными числами и задаются в виже корней, степеней, логарифмов и т.д., результат деления записывается в виде числового выражения, приблизительное значение которого вычисляется в случае необходимости.

Пример 4. Как делить отрицательные числа

Вычислим частное от деления чисел - 0 , 5 и - 5 .

0 , 5 ÷ - 5 = - 0 , 5 ÷ - 5 = 0 , 5 ÷ 5 = 1 2 · 1 5 = 1 2 5 = 5 10 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Прежде всего, чтобы разобраться можно ли ноль поделить на отрицательное число, следует вспомнить, как вообще выполняется деление отрицательных чисел. Математическая операция деления представляет собой действие, обратное умножению.

Это можно описать следующим образом: если a и b рациональные числа, то разделить a на b, это значит найти такое число с, которое при умножении на b даст в результате число a. Данное определение деления верно как для положительных, так и для отрицательных чисел, если делители отличны от нуля. При этом строго соблюдается условие, что на ноль делить нельзя.

Поэтому, например, чтобы разделить число 32 на число -8, следует найти такое число, которое при умножении на число -8 даст в итоге число 32. Таким числом будет -4, так как

(-4) х (-8) = 32. Знаки при этом складываются, и минус на минус даст в итоге плюс.

Таким образом:

Другие примеры деления рациональных чисел:

21: 7 = 3, так как 7 х 3 = 21,

(−9) : (−3) = 3, так как 3 · (−3) = −9.

Правила деления отрицательных чисел

Чтобы определить модуль частного, необходимо разделить модуль делимого числа на модуль делителя. При этом важно учитывать знак и того, и другого элемента операции.

Чтобы поделить два числа с одинаковыми знаками, нужно модуль делимого разделить на модуль делителя, а перед результатом поставить знак плюс.

Чтобы поделить два числа с разными знаками, нужно модуль делимого разделить на модуль делителя, но перед результатом поставить знак минус, причем неважно, какой именно из элементов, делитель или делимое, был отрицательным.

Указанные правила и соотношения между результатами умножения и деления, известные для положительных чисел, справедливы и для всех рациональных чисел, кроме числа ноль.

Для нуля есть важное правило: частное от деления нуля на любое отличное от нуля число также равно нулю.

0: b = 0, b ≠ 0. Причем b может быть и положительным, и отрицательным числом.

Таким образом, можно сделать вывод, что ноль поделить на отрицательное число можно, причем в результате всегда будет ноль.