Числовыми выражениями являются. Числовые выражения

Одним из понятий алгебры 7 класса являются числовые выражения. Они используются для решения задач. Что собой представляют числовые выражения и как их использовать?

Определение понятия

Какое выражение является числовым в алгебре? Так обозначают запись, составленную из цифр, скобок и знаков вычитания, умножения, деления, сложения.

Понятие числового выражения допустимо только в том случае, если запись несет смысловую нагрузку. К примеру, запись 4-) не является числовым выражением, так как она бессмысленна.

Примеры числовых выражений:

  • 25х13;
  • 32-4+8;
  • 12х(25-5).

Характеристики понятия

Числовое выражение имеет несколько свойств, которые используются в решении примеров и задач. Рассмотрим эти свойства подробнее. Для этого возьмем такой пример – 45+21-(6х2).

Значение

Так как числовое выражение содержит знаки различных арифметических действий, их можно выполнить и получить в результате какое-то число. Оно называется значением числового выражения. Как производится вычисление значений числового выражения? Оно соответствует правилам выполнения арифметических действий:

  • в выражениях без скобок выполняют действия, начиная с высших ступеней – умножение, деление, сложение, вычитание;
  • если имеется несколько одинаковых действий, их выполняют слева направо;
  • если есть скобки, сначала выполняют действия в них;
  • при вычислении дробей сначала выполняют действия в числителе и знаменателе, а затем числитель делят на знаменатель.

Применим эти правила к нашему примеру.

  • Сначала найдем значение в скобках: 6х2=12.
  • Затем произведем сложение: 45+21=66.
  • Последним действием найдем разность: 66-12=54.

Итак, число 54 будет являться значением выражения 45+21-(6х2).

Для того, чтобы правильно прочитать числовое выражение нужно определить, какое действие будет являться последним в подсчетах. В выражении 45+21-(6х2) последним действием было вычитание. Соответственно, называть это выражение нужно “разность”. Если бы вместо знака “-” стоял знак “+”, выражение называли бы суммой.

Если у выражения невозможно произвести подсчет значения, его называют не имеющим смысла. Например, смысла не имеет такое выражение: 12:(4-4). В скобках разность равна нулю. А по правилам математики на нуль делить нельзя. Значит, найти значение выражения невозможно.

Равенство

Так называют запись, в которой два числовых выражения разделены знаком “=”. Например, 45+21-(6х2)=66-12. Обе части записи равны числу 54, а значит, они равны друг другу. Такое равенство называют верным.

Если же написать 45+21-(6х2)=35+12, это равенство будет неверным. В левой части равенства значение выражения равно 54, а в правой – 57. эти числа не равны друг другу, значит, и равенство неверное.

Пример задачи

Для того, чтобы лучше понять тему, рассмотрим пример решения задачи. Как решить задачу числовым выражением?

Дано: две машины выезжают из одного пункта в другой. Они поедут по разным дорогам. Одной машине предстоит проехать 35 км., а другой – 42 км. Первая машина едет со скоростью 70 км/ч, а вторая – 84 км/ч Окажутся ли они в конечном пункте в одно и то же время?

Решение: нужно составить два числовых выражения, чтобы найти время в пути у каждой машины. Если они окажутся одинаковыми, значит, машины придут в конечный пункт одновременно. Для того, чтобы найти время, нужно расстояние разделить на скорость. 35 км:70 км/ч=0,5 ч. 42 км:84 км/ч=0,5 ч.

Итак, обе машины приехали в конечный пункт через полчаса.

Что мы узнали?

Из темы по алгебре, изучаемой в 7 классе, мы узнали, что числовое выражение – это запись из цифр и знаков арифметических действий. С помощью числовых выражений можно решать задачи. Если последним действием в числовом выражении было вычитание, то его называют “разность”. Если вместо знака “-” стоит знак “+”, выражение называется суммой.

2. Математическое выражение и его значение.

3. Решение задач на основе составления уравнения.

Алгебра заменяет численные значения количественных характеристик множеств или величин буквенной символикой. В общем виде алгебра также заменяет знаки конкретных действий (сложения, умножения и т. п.) обобщенными символами алгебраических операций и рассматривает не конкретные результаты этих опера­ции (ответы), а их свойства.

Методически считается, что основная роль элементов алгебры в курсе начальных классов состоит математики в том, чтобы способствовать формированию обобщенных представлений детей о понятии «количество» и смысле арифметических действий.

На сегодня наблюдаются две кардинально противоположные тенденции в определении объема содержания алгебраического материала в курсе математики начальной школы. Одна тенденция связана с ранней алгебраизацией курса математики начальных классов, с насыщением его алгебраическим материалом уже с первого класса; другая тенденция связана с введением алгебраического материала в курс математики для начальной школы на его завершающем этапе, в конце 4 класса. Представителями первой тенденции можно считать авторов альтернативных учебников системы Л.В. Занкова (И.И. Аргинская), системы В.В. Давыдова (Э.Н. Александрова, Г.Г. Микулина и др.), системы «Школа 2100» (Л.Г. Петерсон), системы «Школа XXI века» (В.Н. Рудницкая). Представителем второй тенденции мож­но считать автора альтернативного учебника системы «Гармония» Н.Б. Истомину.

Учебник традиционной школы можно считать представителем «серединных» взглядов - он содержит достаточно много алгеб­раического материала, поскольку ориентирован на использование учебника математики Н.Я. Виленкина в 5-6 классах средней школы, но знакомит детей с алгебраическими понятиями начиная со 2 класса, распределяя материал на три года, и за последние 20 лет практически не расширяет список алгебраических понятий.

Обязательный минимум содержания образования по математике для начальных классов (последняя редакция 2001 г.) не содержит алгебраического материала. Не упоминают умений выпускников начальной школы работать с алгебраическими понятиями и требования к уровню их подготовки по завершении обучения в начальных классах.

  1. Математическое выражение и его значение

Последовательность букв и чисел, соединенных знаками действий, называют математическим выражением.

Следует отличать математическое выражение от равенства и неравенства, которые используют в записи знаки равенства и неравенства.

Например:

3 + 2 - математическое выражение;

7 - 5; 5 6 - 20; 64: 8 + 2 - математические выражения;

а + b; 7 - с; 23 - а 4 - математические выражения.

Запись вида 3 + 4 = 7 не является математическим выражением, это равенство.

Запись вида 5 < 6 или 3 + а > 7 - не являются математическими выражениями, это неравенства.

Числовые выражения

Математические выражения, содержащие только числа и знаки действий называют числовыми выражениями.

В 1 классе рассматриваемый учебник не использует данные понятия. С числовым выражением в явном виде (с названием) дети знакомятся во 2 классе.

Простейшие числовые выражения содержат только знаки сложения и вычитания, например: 30 - 5 + 7; 45 + 3; 8 - 2 - 1 и т. п. Выполнив указанные действия, получим значение выражения. Например: 30 - 5 + 7 = 32, где 32 - значение выражения.

Некоторые выражения, с которыми дети знакомятся в курсе математики начальных классов, имеют собственные названия: 4 + 5 - сумма;

6 - 5 - разность;

7 6 - произведение; 63: 7 - частное.

Эти выражения имеют названия для каждого компонента: компоненты суммы - слагаемые; компоненты разности - уменьшаемое и вычитаемое; компоненты произведения - множители; компоненты деления - делимое и делитель. Названия значений этих выражений совпадают с названием выражения, например: значение суммы называют «сумма»; значение частного называют «частное» и т. п.

Следующий вид числовых выражений - выражения, содержащие действия первой ступени (сложение и вычитание) и скобки. С ними дети знакомятся в 1 классе. С этим видом выражений связано правило порядка выполнения действий в выражениях со скобками: действия в скобках выполняются первыми.

Далее следуют числовые выражения, содержащие действия двух ступеней без скобок (сложение, вычитание, умножение и деление). С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия без скобок: действия умножения и деления выполняются рань­ше, чем сложение и вычитание.

Последний вид числовых выражений - выражения, содержащие действия двух ступеней со скобками. С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия и скобки: действия в скобках выполняются первыми, затем выполняются действия умноже­ния и деления, затем действия сложения и вычитания.

Выражения представляют собой основу математики. Понятие это достаточно широко. Большая часть того, с чем приходится иметь дело в математике – и примеры, и уравнения, и даже дроби – являются выражениями. Отличительной особенностью выражения является наличие математических действий. Оно обозначаются определенными знаками (умножения, деления, вычитания или сложения). Последовательность выполнения математических действий при необходимости корректируется скобками. Выполнить математические действия – значит найти значение выражения.

Что не является выражением

Не всякую математическую запись можно отнести к числу выражений.Равенства не являются выражениями. Присутствуют при этом в равенстве математические действия или нет, не имеет значения. Например, a=5 – это равенство, а не выражение, но и 8+6*2=20 тоже нельзя считать выражением, хотя в нем и присутствуют умножение и сложение. Этот пример тоже принадлежит к категории равенств.Понятия выражения и равенства не являются взаимоисключающими, первое входят в состав второго. Знак равенства соединяет два выражения:
5+7=24:2Можно это равенство упростить:
5+7=12Выражение всегда предполагает, что представленные в нем математические действия могут быть выполнены. 9+:-7 – это не выражение, хотя здесь есть знаки математических действий, ведь выполнить эти действия невозможно.Существуют и такие математические примеры, которые формально являются выражениями, но не имеют смысла. Пример такого выражения:
46:(5-2-3)Число 46 необходимо разделить на результат действий в скобках, а он равен нулю. На нуль же делить нельзя, такое действие в математике считается запретным.

Числовые и алгебраические выражения

Существует два вида математических выражений.Если выражение содержит только числа и знаки математических действий, такое выражение называется числовым. Если же в выражении наряду с числами присутствуют переменные, обозначаемые буквами, или чисел нет вообще, выражение состоит только из переменных и знаков математических действий, оно называется алгебраическим.Принципиальное отличие числового значения от алгебраического состоит в том, что у числового выражения значение только одно. Например, значение числового выражения 56–2*3 всегда будет равно 50, ничего изменить нельзя. У алгебраического же выражения значений может быть много, ведь вместо буквы можно подставить любое число. Так, если в выражении b–7 вместо b подставить 9, значение выражения будет равно 2, а если 200 – оно будет составлять 193.

Запись условий задач с помощью принятых в математике обозначений приводит к появлению так называемых математических выражений, которые называют просто выражениями. В этой статье мы подробно поговорим про числовые, буквенные выражения и выражения с переменными : дадим определения и приведем примеры выражений каждого вида.

Навигация по странице.

Числовые выражения – что это?

Знакомство с числовыми выражениями начинается чуть ли не с самых первых уроков математики. Но свое имя – числовые выражения – они официально приобретают немного позже. Например, если следовать курсу М. И. Моро, то это происходит на страницах учебника математики для 2 классов. Там представление о числовых выражениях дается так: 3+5 , 12+1−6 , 18−(4+6) , 1+1+1+1+1 и т.п. – это все числовые выражения , а если в выражении выполнить указанные действия, то найдем значение выражения .

Можно сделать вывод, что на этом этапе изучения математики числовыми выражениями называют имеющие математический смысл записи, составленные из чисел, скобок и знаков сложения и вычитания.

Чуть позже, после знакомства с умножением и делением, записи числовых выражений начинают содержать знаки «·» и «:». Приведем несколько примеров: 6·4 , (2+5)·2 , 6:2 , (9·3):3 и т.п.

А в старших классах разнообразие записей числовых выражений разрастается как снежный ком, катящийся с горы. В них появляются обыкновенные и десятичные дроби, смешанные числа и отрицательные числа, степени, корни, логарифмы, синусы, косинусы и так далее.

Обобщим всю информацию в определение числового выражения:

Определение.

Числовое выражение - это комбинация чисел, знаков арифметических действий, дробных черт, знаков корня (радикалов), логарифмов, обозначений тригонометрических, обратных тригонометрических и других функций, а также скобок и других специальных математических символов, составленная в соответствии с принятыми в математике правилами.

Разъясним все составные части озвученного определения.

В числовых выражениях могут участвовать абсолютно любые числа: от натуральных до действительных, и даже комплексных. То есть, в числовых выражениях можно встретить

Со знаками арифметических действий все понятно – это знаки сложения, вычитания, умножения и деления, имеющие соответственно вид «+», «−» , «·» и «:». В числовых выражениях может присутствовать один из этих знаков, некоторые из них или все сразу, и причем по нескольку раз. Вот примеры числовых выражений с ними: 3+6 , 2,2+3,3+4,4+5,5 , 41−2·4:2−5+12·3·2:2:3:12−1/12 .

Что касается скобок , то имеют место как числовые выражения, в которых есть скобки, так и выражения без них. Если в числовом выражении есть скобки, то они в основном

А иногда скобки в числовых выражениях имеют какое-нибудь определенное отдельно указанное специальное предназначение. К примеру, можно встретить квадратные скобки, обозначающие целую часть числа, так числовое выражение +2 обозначает, что к целой части числа 1,75 прибавляется число 2 .

Из определения числового выражения также видно, что в выражении могут присутствовать , , log , ln , lg , обозначения или и т.п. Вот примеры числовых выражений с ними: tgπ , arcsin1+arccos1−π/2 и .

Деление в числовых выражениях может быть обозначено с помощью . В этом случае имеют место числовые выражения с дробями. Приведем примеры таких выражений: 1/(1+2) , 5+(2·3+1)/(7−2,2)+3 и .

В качестве специальных математических символов и обозначений, которые можно встретить в числовых выражениях, приведем . Для примера покажем числовое выражение с модулем .

Что такое буквенные выражения?

Понятие буквенных выражений дается практически сразу после знакомства с числовыми выражениями. Вводится оно примерно так. В некотором числовом выражении одно из чисел не записывается, а вместо него ставится кружочек (или квадратик, или нечто подобное), и говорится, что вместо кружочка можно подставить некоторое число. Для примера приведем запись . Если вместо квадратика поставить, например, число 2 , то получится числовое выражение 3+2 . Так вот вместо кружочков, квадратиков и т.п. условились записывать буквы, а такие выражения с буквами назвали буквенными выражениями . Вернемся к нашему примеру , если в этой записи вместо квадратика поставить букву a , то получится буквенное выражение вида 3+a .

Итак, если допустить в числовом выражении присутствие букв, которыми обозначены некоторые числа, то получится так называемое буквенное выражение. Дадим соответствующее определение.

Определение.

Выражение, содержащее буквы, которыми обозначены некоторые числа, называется буквенным выражением .

Из данного определения понятно, что принципиально буквенное выражение отличается от числового выражения тем, что может содержать буквы. Обычно в буквенных выражениях используются маленькие буквы латинского алфавита (a, b, c, … ), а при обозначении углов – маленькие буквы греческого алфавита (α, β, γ, … ).

Итак, буквенные выражения могут быть составлены из чисел, букв и содержать все математические символы, которые могут встречаться в числовых выражениях, такие как скобки, знаки корней, логарифмы, тригонометрические и другие функции и т.п. Отдельно подчеркнем, что буквенное выражение содержит по крайней мере одну букву. Но может содержать и несколько одинаковых или различных букв.

Теперь приведем несколько примеров буквенных выражений. Например, a+b – это буквенное выражение с буквами a и b . Вот другой пример буквенного выражения 5·x 3 −3·x 2 +x−2,5 . И приведем пример буквенного выражения сложного вида: .

Выражения с переменными

Если в буквенном выражении буква обозначает величину, которая принимает не какое-то одно конкретное значение, а может принимать различные значения, то эту букву называют переменной и выражение называют выражением с переменной .

Определение.

Выражение с переменными – это буквенное выражение, в котором буквы (все или некоторые) обозначают величины, принимающие различные значения.

Например, пусть в выражении x 2 −1 буква x может принимать любые натуральные значения из интервала от 0 до 10 , тогда x – есть переменная, а выражение x 2 −1 есть выражение с переменной x .

Стоит отметить, что переменных в выражении может быть несколько. К примеру, если считать x и y переменными, то выражение является выражением с двумя переменными x и y .

Вообще, переход от понятия буквенного выражения к выражению с переменными происходит в 7 классе, когда начинают изучать алгебру. До этого момента буквенные выражения моделировали какие-то конкретные задачи. В алгебре же начинают смотреть на выражение более общо, без привязки к конкретной задаче, с пониманием того, что данное выражение подходит под огромное число задач.

В заключение этого пункта обратим внимание еще на один момент: по внешнему виду буквенного выражения невозможно узнать, являются ли входящие в него буквы переменными или нет. Поэтому ничто нам не мешает считать эти буквы переменными. При этом разница между терминами «буквенное выражение» и «выражение с переменными» исчезает.

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

a + b + 4

С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

Любая серьезная задача в математике сводится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

Содержание урока

Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными . Например, в выражении a+b+4 переменными являются буквы a и b . Если вместо этих переменных подставить любые числа, то буквенное выражение a+b+4 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных . Например, изменим значения переменных a и b . Для изменения значений используется знак равенства

a = 2, b = 3

Мы изменили значения переменных a и b . Переменной a присвоили значение 2 , переменной b присвоили значение 3 . В результате буквенное выражение a+b+4 обращается в обычное числовое выражение 2+3+4 значение которого можно найти:

2 + 3 + 4 = 9

Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a×b . Если подставить вместо переменных a и b числа 2 и 3 , то мы получим 6

2 × 3 = 6

Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a×(b + c) можно записать a(b + c) . Применив распределительный закон умножения, получим a(b + c)=ab+ac .

Коэффициенты

В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a . На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a .

Другими словами, выражение 3a является произведением числа 3 и переменной a . Число 3 в этом произведении называют коэффициентом . Этот коэффициент показывает во сколько раз будет увеличена переменная a . Данное выражение можно прочитать как «a три раза» или «трижды а «, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a «

К примеру, если переменная a равна 5 , то значение выражения 3a будет равно 15.

3 × 5 = 15

Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

Букв может быть несколько, например 5abc . Здесь коэффициентом является число 5 . Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc «.

Если вместо вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

5 × 2 × 3 × 4 = 120

Можно мысленно представить, как сначала перемножились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

Знак коэффициента относится только к коэффициенту, и не относится к переменным.

Рассмотрим выражение −6b . Минус, стоящий перед коэффициентом 6 , относится только к коэффициенту 6 , и не относится к переменной b . Понимание этого факта позволит не ошибаться в будущем со знаками.

Найдем значение выражения −6b при b = 3 .

−6b −6×b . Для наглядности запишем выражение −6b в развёрнутом виде и подставим значение переменной b

−6b = −6 × b = −6 × 3 = −18

Пример 2. Найти значение выражения −6b при b = −5

Запишем выражение −6b в развёрнутом виде

−6b = −6 × b = −6 × (−5) = 30

Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

−5a + b это короткая форма записи от −5 × a + b , поэтому для наглядности запишем выражение −5×a+b в развёрнутом виде и подставим значения переменных a и b

−5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13

Иногда буквы записаны без коэффициента, например a или ab . В этом случае коэффициентом является единица:

но единицу по традиции не записывают, поэтому просто пишут a или ab

Если перед буквой стоит минус, то коэффициентом является число −1 . Например, выражение −a на самом деле выглядит как −1a . Это произведение минус единицы и переменной a. Оно получилось следующим образом:

−1 × a = −1a

Здесь кроется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к «невидимой единице», а не к переменной a . Поэтому при решении задач следует быть внимательным.

К примеру, если дано выражение −a и нас просят найти его значение при a = 2 , то в школе мы подставляли двойку вместо переменной a и получали ответ −2 , не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

−a = −1 × a

−1 × a = −1 × 2 = −2

Если дано выражение −a и требуется найти его значение при a = −2 , то мы подставляем −2 вместо переменной a

−a = −1 × a

−1 × a = −1 × (−2) = 2

Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

Пример 4. Найти значение выражения abc при a=2 , b=3 и c=4

Выражение abc 1×a×b×c. Для наглядности запишем выражение abc a , b и c

1 × a × b × c = 1 × 2 × 3 × 4 = 24

Пример 5. Найти значение выражения abc при a=−2 , b=−3 и c=−4

Запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24

Пример 6. Найти значение выражения abc при a=3 , b=5 и c=7

Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

−abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105

Пример 7. Найти значение выражения abc при a=−2 , b=−4 и c=−3

Запишем выражение abc в развёрнутом виде:

−abc = −1 × a × b × c

Подставим значение переменных a , b и c

−abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24

Как определить коэффициент

Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень проста. Достаточно уметь правильно умножать числа.

Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

Пример 1. 7m×5a×(−3)×n

Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть, произведения 7m и 5a записать в виде 7×m и 5×a

7 × m × 5 × a × (−3) × n

Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемножим числа и отдельно перемножим буквы (переменные):

−3 × 7 × 5 × m × a × n = −105man

Коэффициент равен −105 . После завершения буквенную часть желательно расположить в алфавитном порядке:

−105amn

Пример 2. Определить коэффициент в выражении: −a×(−3)×2

−a × (−3) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

Коэффициент равен 6.

Пример 3. Определить коэффициент в выражении:

Перемножим отдельно числа и буквы:

Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен неверно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, должна быть изучена на хорошем уровне.

Слагаемые в буквенных выражениях

При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

1 + 2 + 3 + 4 + 5

Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

1 + 2 − 3 + 4 − 5

В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

1 + 2 + (−3) + 4 + (−5)

Не суть, что числа −3 и −5 теперь со знаком минуса. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице

1 + 2 − 3 + 4 − 5 = −1

1 + 2 + (−3) + 4 + (−5) = −1

Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

7a + 6b − 3c + 2d − 4s

7a + 6b + (−3c) + 2d + (−4s)

При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

Например, если на доске будет записана разность a − b , то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые . А всё потому, что выражение вида a − b математик видит, как сумму a + (−b) . В таком случае выражение становится суммой, а переменные a и (−b) становятся слагаемыми.

Подобные слагаемые

Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть. Например, рассмотрим выражение 7a + 6b + 2a . Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a . Значит слагаемые 7a и 2a являются подобными.

Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Эту операцию называют приведением подобных слагаемых .

Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

Например приведём подобные слагаемые в выражении 3a + 4a + 5a . В данном случае, подобными являются все слагаемые. Сложим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

3a + 4a + 5a = (3 + 4 + 5)×a = 12a

Подобные слагаемые обычно приводят в уме и результат записывают сразу:

3a + 4a + 5a = 12a

Также, можно рассуждать следующим образом:

Было 3 переменные a , к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

Пример 1. 3a + 2a + 6a + 8 a

Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

3a + 2a + 6a + 8a = (3 + 2 + 6 + 8) × a = 19a

Конструкцию (3 + 2 + 6 + 8)×a можно не записывать, поэтому сразу запишем ответ

3a + 2a + 6a + 8a = 19a

Пример 2. Привести подобные слагаемые в выражении 2a + a

Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1 , который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + 1a

Теперь приведем подобные слагаемые. То есть, сложим коэффициенты и результат умножим на общую буквенную часть:

2a + 1a = (2 + 1) × a = 3a

Запишем решение покороче:

2a + a = 3a

2a+a , можно рассуждать и по-другому:

Пример 3. Привести подобные слагаемые в выражении 2a − a

Заменим вычитание сложением:

2a + (−a)

Второе слагаемое (−a) записано без коэффициента, но на самом оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + (−1a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

2a + (−1a) = (2 + (−1)) × a = 1a = a

Обычно записывают короче:

2a − a = a

Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

Было 2 переменные a , вычли одну переменную a , в итоге осталась одна единственная переменная a

Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

(6 + (−3) + 4 + (−8)) × a = −1a = −a

Запишем решение покороче:

6a − 3a + 4a − 8a = −a

Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b . Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a , можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b , можно подчеркнуть двумя линиями:

Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b .

3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

3a + 3b + 7a + 2b = 10a + 5b

Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

Заменим вычитание сложение там, где это можно:

5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержание переменные b , подчеркнем двумя линиями:

Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть:

5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)

Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

Заменим вычитание сложением там, где это можно:

4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

Запишем решение покороче:

4a + 3a − 5 + 2b + 7 = 7a + 2b + 2

Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t , можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

5t + 5t + 2x + 3x + x

Теперь можно привести подобные слагаемые:

5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

Запишем решение покороче:

5t + 2x + 3x + 5t + x = 10t + 6x

Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

Заменим вычитание сложением там, где это можно:

3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

В итоге у нас останется выражение (−4t) + 2t . В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

(−4t) + 2t = ((−4) + 2)×t = −2t

Запишем решение покороче:

Упрощение выражений

«упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его проще и короче.

На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

Рассмотрим следующий пример. Упростить выражение .

Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его проще» .

В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

Что ещё можно сделать? Можно вычислить полученную дробь . Тогда мы получим десятичную дробь 0,5

В итоге дробь упростилась до 0,5.

Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть «а что можно сделать?» . Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

Ещё один важный момент, о котором нужно помнить, заключается в том, что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению . Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

Но мы упростили выражение и получили новое упрощенное выражение . Значение нового упрощенного выражения по-прежнему равно 0,5

Но выражение мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

Рассмотрим несколько примеров.

Пример 1. Упростить выражение 5,21s × t × 2,5

Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st .

Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b , затем отдельно перемножить числа и отдельно перемножить буквы:

0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b

Пример 3. Упростить выражение

Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

Теперь отдельно перемножим числа и отдельно перемножим буквы:

Таким образом, выражение упростилось до −abc. Данное решение можно записать покороче:

При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать , в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

Пример 4. Упростить выражение

Таким образом, выражение упростилось до

Пример 5. Упростить выражение

Перемножим отдельно числа и отдельно буквы:

Таким образом, выражение упростилось до mn .

Пример 6. Упростить выражение

Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число можно перевести в обыкновенные дроби:

Таким образом, выражение упростилось до

Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

Пример 7. Упростить выражение

Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

Таким образом, выражение упростилось до abcd . Если пропустить подробности, то данное решение можно записать значительно короче:

Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

Например, если требуется упростить выражение 5a + 4b , то нельзя записывать следующим образом:

Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

При подстановке любых значений переменных a и b выражение 5a +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

a = 2 , b = 3

Тогда значение выражения будет равно 22

5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

5a + 4b = 5 × 4 × a × b = 20ab

20ab = 20 × 2 × 3 = 120

Получается совсем другое значение выражения. В первом случае получилось 22 , во втором случае 120 . Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

Пример 8. Упростить выражение 0,3a−0,4a+a

0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

или покороче: 0,3a − 0,4a + a = 0,9a

Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a

Пример 9. Упростить выражение −7,5a − 2,5b + 4a

Чтобы упростить данное выражение можно привести подобные слагаемые:

−7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.

Пример 10. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Коэффициент был для удобства вычисления.

Таким образом, выражение упростилось до

Пример 11. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Таким образом, выражение упростилось до .

В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело оно будет следующим образом:

Пример 12. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Таким образом, выражение упростилось до.

Слагаемое осталось без изменения, поскольку его не с чем было складывать.

Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

Ещё одно различие заключается в том, что в подробном решении ответ выглядит как , а в коротком как . На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.

Тождества. Тождественно равные выражения

После того, как мы упростили любое выражение, оно становится проще и короче. Чтобы проверить, верно ли упрощено выражение, достаточно подставить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то выражение упрощено верно.

Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b . Чтобы упростить данное выражение, можно по отдельности перемножить числа и буквы:

2a × 7b = 2 × 7 × a × b = 14ab

Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

Пусть значения переменных a , b будут следующими:

a = 4 , b = 5

Подставим их в первое выражение 2a × 7b

Теперь подставим те же значения переменных в выражение, которое получилось в результате упрощения 2a×7b , а именно в выражение 14ab

14ab = 14 × 4 × 5 = 280

Видим, что при a=4 и b=5 значение первого выражения 2a×7b и значение второго выражения 14ab равны

2a × 7b = 2 × 4 × 7 × 5 = 280

14ab = 14 × 4 × 5 = 280

То же самое произойдет и для любых других значений. Например, пусть a=1 и b=2

2a × 7b = 2 × 1 × 7 × 2 =28

14ab = 14 × 1 × 2 =28

Таким образом, при любых значениях переменных выражения 2a×7b и 14ab равны одному и тому же значению. Такие выражения называют тождественно равными .

Делаем вывод, что между выражениями 2a×7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению.

2a × 7b = 14ab

Равенством называют любое выражение, которые соединено знаком равенства (=).

А равенство вида 2a×7b = 14ab называют тождеством .

Тождеством называют равенство, которое верно при любых значениях переменных.

Другие примеры тождеств:

a + b = b + a

a(b+c) = ab + ac

a(bc) = (ab)c

Да, законы математики, которые мы изучали, являются тождествами.

Верные числовые равенства также являются тождествами. Например:

2 + 2 = 4

3 + 3 = 5 + 1

10 = 7 + 2 + 1

Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения .

Например, мы упростили выражение 2a × 7b , и получили более простое выражение 14ab . Это упрощение можно называть тождественным преобразованием.

Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

0,5 × 5 × a × b = 2,5ab

2,5ab = 2,5ab

В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

Задания для самостоятельного решения:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках