Геометрическая оптика, границы ее применения. Основной принцип геометрической оптики

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю. Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона , установленных опытным путем:· закон прямолинейного распространения света;· закон независимости световых лучей;· закон отражения;· закон преломления света.Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса .Каждая точка, до которой доходит световое возбуждение, является , в свою очередь, центром вторичных волн ; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления .Закон прямолинейного распространения света свет в оптически однородной среде распространяется прямолинейно .Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.Рис 7.1Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны , когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков эффект, производимый отдельным пучком, не зависит от того , действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.Закон отражения (рис. 7.3):· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром , проведенным к границе раздела двух сред в точке падения угол падения α равен углу отражения γ: α = γ

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ с , падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А , эта точка начнет излучать вторичную волну .· Для прохождения волной расстояния ВС требуется время Δt = BC / υ . За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υ Δt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения : угол падения α равен углу отражения γ. Закон преломления (закон Снелиуса ) (рис. 7.5):· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; · отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред .

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ ), распространяющаяся в вакууме вдоль направления I со скоростью с , падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).Пусть время, затрачиваемое волной для прохождения пути ВС , равно Dt . Тогда ВС = с Dt . За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u , достигнет точек полусферы, радиус которой AD = u Dt . Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление ее распространения – лучом III. Из рис. 7.6 видно, что , т.е. .Отсюда следует закон Снелиуса : .Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.Согласно принципу Ферма , свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время . Покажем применение этого принципа к решению той же задачи о преломлении света.Луч от источника света S , расположенного в вакууме идет до точки В , расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB . Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB : .Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю: ,отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).Из принципа Ферма вытекает несколько следствий.Обратимость световых лучей : если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I. Другой пример – мираж , который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной) ( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а ).

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б , в ), до тех пор, пока при некотором угле падения () угол преломления не окажется равным π/2.Угол называется предельным углом . При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г ). · По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г ). · Таким образом , при углах падения в пределах от до π/2 , луч не преломляется , а полностью отражается в первую среду , причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением. Предельный угол определим из формулы: ; .Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.На рис. 7.9 показаны призмы полного отражения, позволяющие:а) повернуть луч на 90°;б) повернуть изображение;в) обернуть лучи.Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах , представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.Рис. 7.10В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного , претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.Световоды используются при создании телеграфно-телефонных кабелей большой емкости . Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.

Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю.

Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона , установленных опытным путем:

· закон прямолинейного распространения света;

· закон независимости световых лучей;

· закон отражения;

· закон преломления света.

Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса .

Каждая точка, до которой доходит световое возбуждение, является , в свою очередь, центром вторичных волн ; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления .

Закон прямолинейного распространения света :

· свет в оптически однородной среде распространяется прямолинейно .

Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.

Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.


Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.

Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны , когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков :

· эффект, производимый отдельным пучком, не зависит от того , действуют ли одновременно остальные пучки или они устранены.

Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.

Закон отражения (рис. 7.3):

· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром , проведенным к границе раздела двух сред в точке падения ;

· угол падения α равен углу отражения γ: α = γ

Рис. 7.3 Рис. 7.4

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ со скоростью с , падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А , эта точка начнет излучать вторичную волну .

· Для прохождения волной расстояния ВС требуется время Δt = BC / υ . За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υ Δt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения : угол падения α равен углу отражения γ.

Закон преломления (закон Снелиуса ) (рис. 7.5):

· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости;

· отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред .

Рис. 7.5 Рис. 7.6

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ ), распространяющаяся в вакууме вдоль направления Iсо скоростью с , падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).

Пусть время, затрачиваемое волной для прохождения пути ВС , равно Dt . Тогда ВС = с Dt . За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u , достигнет точек полусферы, радиус которой AD = u Dt . Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление ее распространения – лучом III. Из рис. 7.6 видно, что

Отсюда следует закон Снелиуса :

Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.

Согласно принципу Ферма , свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время .

Покажем применение этого принципа к решению той же задачи о преломлении света.

Луч от источника света S , расположенного в вакууме идет до точки В , расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB . Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB :

.

Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю:

отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .

Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).

Из принципа Ферма вытекает несколько следствий.

Обратимость световых лучей : если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I.

Другой пример – мираж , который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.

Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной)( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а ).

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б , в ), до тех пор, пока при некотором угле падения () угол преломления не окажется равным π/2.

Угол называется предельным углом . При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г ).

· По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.

· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г ).

· Таким образом , при углах падения в пределах от до π/2 , луч не преломляется , а полностью отражается в первую среду , причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением.

Предельный угол определим из формулы:

;

.

Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.

При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.

На рис. 7.9 показаны призмы полного отражения, позволяющие:

а) повернуть луч на 90°;

б) повернуть изображение;

в) обернуть лучи.

Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).


Явление полного отражения используется также в световодах , представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.

В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного , претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.

Световоды используются при создании телеграфно-телефонных кабелей большой емкости . Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.

Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

Основные законы геометрической оптики. Полное отражение

Световой луч - это направленная линия, вдоль которой распространяется световая энергия. При этом ход светового луча не зависит от поперечных размеров пучка света. Говорят, что он распространяется в одном единственном направлении: вдоль светового луча.

В основе геометрической оптики лежат несколько простых эмпирических законов:

1)Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям.

Отсюда - понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком.

Наблюдения за распространением света во многих случаях свидетельствуют о том, что свет распространяется прямолинейно. Это и тень от предмета͵ освещаемого уличным фонарем, и движение тени Луны по Земле во время солнечных затмений, и лазерная юстировка приборов, и многие другие факты. Во всех случаях мы подразумеваем, что свет движется по прямой линии.

В геометрической оптике рассматриваются законы распространения света в прозрачных средах на основе представления о свете как о совокупности световых лучей – прямых или искривленных линий , которые начинаются на источнике света и продолжаются бесконечно. В случае если среда однородная, то лучи распространяются по прямым линиям. Эта закономерность и известна как закон прямолинейного распространения света. Прямолинейность распространения света проявляется в образовании тени от непрозрачного тела, если его освещают точечным источником света. В случае если тот же предмет освещают двумя точечными источниками света S 1 и S 2 (рис.1) или одним протяженным источником, то на экране возникают участки, которые освещены частично и носят название полутени. Примером образования тени и полутени в природе является солнечное затмение. Область применения этого закона ограничена. При малых размерах отверстия, через ĸᴏᴛᴏᴩᴏᴇ проходит свет (порядка 10 -5 м), как уже отмечалось выше, наблюдается явление отклонения света от прямой траектории, ĸᴏᴛᴏᴩᴏᴇ получило название дифракции света.

Рис.1.1.1 Образование тени и полутени.

В неоднородной среде лучи распространяются по криволинейным траекториям. Примеров неоднородной среды – разогретый песок в пустыне. Вблизи него воздух имеет высокую температуру, которая с высотой уменьшается. Соответственно плотность воздуха ближе к поверхности пустыни уменьшается. По этой причине лучи, идущие от реального объекта͵ преломляются в слоях воздуха, имеющих различную температуру, и искривляются. Как результат – формируется ложное представление о местоположении объекта. Возникает мираж, то есть изображение вблизи поверхности может казаться расположенным высоко на небе. По сути, это явление аналогично преломлению света в воде. К примеру, конец шеста͵ опущенного в воду, нам будет казаться расположенным ближе к ее поверхности, чем на самом деле.

2)Закон независимого распространения лучей : световые лучи распространяются независимо друг от друга.

Так, например, при установке непрозрачного экрана на пути пучка световых лучей экранируется (исключается) из состава пучка некоторая его часть. Однако, по свойству независимости необходимо считать, что действие лучей оставшихся незаэкранированными от этого не изменится. То есть предполагается, что лучи не влияют друг на друга, и распространяются так, как будто других лучей, кроме рассматриваемого, не существует.

Закон независимости световых пучков означает, что эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, пучки света можно складывать и расщеплять. Сложенные пучки будут ярче. Хорошо известный пример из истории сложения пучков солнечного света͵ когда при защите города от нападения вражеских судов с моря пучки света от Солнца множеством зеркал направлялись на судно в одну точку, так что в жаркое лето на деревянном судне возникал пожар. Многие из нас в детстве с помощью увеличительного стекла, собирающего свет, пробовали выжигать буквы на деревянной поверхности.

3) Закон отражения света

Отраже́ние - физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. В геологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

Закон отражения света:

падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, «угол падения α равен углу отражения γ».

Рис.1.1.2 Закон преломления

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальным называют отражение света͵ когда падающий параллельный пучок света сохраняет свою параллельность после отражения. В случае если размеры неровностей поверхности больше длины волны падающего света͵ то он рассеивается по всевозможным направлениям, такое отражение света называют рассеянным или диффузионным.

Зеркальное отражение света:

1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения;

2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

Пример. В частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

4)Закон преломления света

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света.

Если вторая среда прозрачна, то часть света при определенных условиях может пройти через границу сред, также меняя при этом, как правило, направление своего распространения. Это явление называется преломлением света.

Закон преломления света: Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления β есть величина постоянная для двух данных сред

Показатель преломления - постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления одной среды относительно первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды. Он равен отношению синуса угла падения α к синусу угла преломления при переходе светового луча из вакуума в данную среду. Относительный показатель преломления n связан с абсолютными показателями n2 и n1 первой среды соотношением:

Поэтому закон преломления может быть записан следующим образом:

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой

Абсолютный показатель преломления среды связан со скоростью распространения света в данной среде и зависит от физического состояния среды, в которой распространяется свет, т.е. от температуры, плотности вещества, наличия в нем упругих натяжений. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

5) Закон обратимости светового луча . Согласно нему луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости, создаваемые ими, складываются.

Полное (внутреннее) отражение

Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При некотором критическом значении интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления β равным 90°:

Если n - показатель преломления стекла относительно воздуха (n>1), то показатель преломления воздуха относительно стекла будет равен 1/n. В данном случае стекло является первой средой, а воздух - второй. Закон преломления запишется так:

При этом угол преломления больше угла падения, Значит, переходя в оптически менее плотную среду, луч отклоняется в сторону от перпендикуляра к границе двух сред. Наибольшему возможному углу преломления β = 90° соответствует угол падения a0.

При угле падения a > a0 преломленный пучок исчезнет, и весь свет отражается от границы раздела, т.е. происходит полное отражение света. Тогда, если направить луч света из оптически более плотной среды в оптически менее плотную среду, то по мере увеличения угла падения преломленный луч будет приближаться к границе раздела двух сред, затем пойдет по границе раздела, а при дальнейшем увеличении угла падения преломленный луч исчезнет, т.е. падающий луч будет полностью отражаться границей раздела двух сред.

Рис.1.1.3 Полное отражение

Предельный угол (альфа нулевое)– это угол падения, которому соответствует угол преломления 90 градусов.

Сумма интенсивностей отраженного и преломленного лучей равна интенсивности падающего луча. При увеличении угла падения интенсивность отраженного луча растет, а интенсивность преломленного луча убывает и для предельного угла падения становится равной нулю.

Рис.1.1.4 Световод

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.

Волокна собираются в жгуты. При этом по каждому из волокон передаётся какой-нибудь элемент изображения.

Жгуты из волокон используются в медицине для исследования внутренних органов. Два световода можно закинуть в любое малодоступое место организма. С помощью одного световода освещают нужный объект, посредством другого передают его изображение в фотокамеру или глаз. Например, опуская световоды в желудок, медикам удаётся получить прекрасное изображение интересующей их области, несмотря на то, что световоды приходится перекручивать и изгибать самым причудливым образом.

Волоконная оптика применяется в для передачи большого объема информации в компьютерных сетях, для освещения недоступных мест, в рекламе, бытовой осветительной технике.

В военном деле, на подводных лодках широко используются перископы. Периско́п (от греч. peri - «вокруг» и scopo - «смотрю») - прибор для наблюдения из укрытия. Простейшая форма перископа - труба, на обоих концах которой закреплены зеркала, наклоненные относительно оси трубы на 45° для изменения хода световых лучей. В более сложных вариантах для отклонения лучей вместо зеркал используются призмы, а получаемое наблюдателем изображение увеличивается с помощью системы линз. Луч света полностью отражается и попадает в глаз наблюдателя.

Отклонение лучей призмой

На рисунке изображено сечение стеклянной призмы плоскостью, перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и 0В. Угол А между этими гранями называют преломляющим углом призмы. Угол φ отклонения луча зависит от преломляющего угла призмы А, показателя преломления п материала призмы и угла падения a1. Он может быть вычислен с помощью закона преломления.

φ = А (п-1)

Следовательно, угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы

Рис.1.1.5 Отклонение лучей призмой

Призмы используются в конструкциях многих оптических приборов, к примеру, телескопов, биноклей, перископов, спектрометров. Используя призму, И.Ньютон впервые разложил свет на составляющие, и увидел, что на выходе из призмы возникает разноцветный спектр, причем цвета расположены в том же порядке, как и в радуге. Оказалось, что естественный «белый» свет состоит из большого количества разноцветных пучков.

Контрольные вопросы и задания

1. Сформулируйте и поясните основные законы геометрической оптики.

2. В чем заключается физический смысл абсолютного показателя преломления среды? Что такое относительный показатель преломления?

3. Сформулируйте условия зеркального и диффузного отражений света.

4. При каком условии наблюдается полное отражение?

5. Чему равен угол падения луча, если луч падающий и луч отраженный образуют угол ?

6. Докажете обратимость направления световых лучей для случая отражения света.

7.Можно ли придумать такую систему зеркал и призм (линз) через которую один наблюдатель видел бы второго наблюдателя, а второй наблюдатель не видел бы первого?

8.Показатель преломления стекла относительно воды равен 1,182: показатель преломления глицерина относительно воды равен 1.105. Найдите показатель преломления стекла относительно глицерина.

9. Найдите предельный угол полного внутреннего отражения для алмаза на границе с водой.

10. Почему блестят воздушные пузыри в воде?(Ответ: за счет отражения света на границе «вода-воздух»)

Предисловие

Для студентов МГАВТ инженерно- технических факультетов и специальностей.

Москва 2007.

Альтаир МГАВТ

К У Р С Л Е К Ц И Й

МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВОДНОГО ТРАНСПОРТА

Федеральное агентство морского и речного транспорта

Кафедра физики и химии

Пономарева В.А.

Кузьмичева В.А.

по общей физике, ч. III

Оптика, атомная и ядерная физика


Пономарева Вера Андреевна.

Кузьмичева Виктория Александровна

Курс лекций по общей физике, ч. III (Оптика, атомная и ядерная физика)

М.: Альтаир МГАВТ 2007. – 80 с.

Курс лекций по общей физике, ч. III (Оптика, атомная и ядерная физика) представляет собой тексты лекций по оптике, атомной и ядерной физике, составленных в соответствии с действующим Государственным общеобразовательным стандартом Министерства образования Российской Федерации.

Основные задачи курса вытекают из требований, предъявляемых к уровню знаний в области физики будущих специалистов водного транспорта, необходимых для успешного изучения технических дисциплин. Курс адаптирован для студентов МГАВТ технических специальностей.

Рецензент:

Утверждено на заседании кафедры Физики и химии МГАВТ.

Протокол № 5 от 06.02. 2007 г.


Физика принадлежит к числу фундаментальных наук, составляющих основу теоретической подготовки инженеров. Без ее знания невозможна успешная деятельность инженера в любой области современной техники. Стремительное развитие новых поколений техники в современных условиях требует новых качеств от преподавателей и студентов для ее освоения. Это особенно касается нанотехнологий, энергетических машин, материалов и способов их обработки, новых методов проектирования, освоить которые без знаний основ физики невозможно. Высокие требования к инженерным разработкам подкрепляются жесткой конкуренцией идей и проектов, которые также невозможно грамотно сформулировать без знания физики. Важность изучения физики несомненна.

Функционирование морского и речного транспорта переходит на новый уровень (например, лазерная проводка судов и т.п.) и это требует от студентов МГАВТ глубоких знаний по физике. Предлагаемый курс адаптирован к начальному уровню подготовки студентов МГАВТ и доводит этот уровень подготовки до требований образовательного стандарта.

Программа курса (в 3-х частях) учитывает задачи, которые существуют в инженерном образовании в связи с перестройкой учебного процесса в вузах. Авторы пытаются связать классическую физику с современным состоянием этой науки (вводят главы о полупроводниковых приборах, лазерных устройствах и т.п.). Это привело к пересмотру последовательности изложения курса.



Каждая часть курса состоит из 16 лекций (согласно часам, отведенным МГАВТ на изучение физики). В курсе отмечаются трудности и ошибки, которые подчас имеют место до сих пор. Отмечены границы применимости физических теорий и законов. При отборе материала использовался многолетний преподавательский опыт авторов по чтению курса общей физики в Уфимском государственном авиационном техническом университете (УГАТУ), Уфимском высшем военном авиационном училище летчиков (УВВАУЛ).

Авторы выражают глубокую благодарность за представленные конспекты некоторых лекций, полезные советы и замечания доц. Катальниковой Ирине Николаевне. Авторы благодарны заведующему кафедрой общей физики УВВАУЛ доц. Татаринову Льву Николаевичу за помощь при подготовке лекций в первом исходном варианте.


Предисловие 3

Лекция 1 Элементы геометрической оптики. 4

1. Основные законы геометрической оптики. 4

2. Тонкие линзы. Изображение предметов с помощью собирающей линзы. 4

Лекция 2 Волновая оптика. 4

3. Интерференция света. 4

4. Получение когерентных источников. Оптическая разность хода. 4

5. Расчет интерференции в опыте Юнга. 4

Лекция 3. Интерференция света. 4

1. Интерференция в тонких пленках. 4

2. Кольца Ньютона. 4

3. Применение интерференции. 4

Лекция 4. Дифракция света. 4

1. Принцип Гюйгенса – Френеля. 4

2. Дифракция Френеля на круглом отверстии. 4

3. Дифракция Френеля на небольшом диске. 4

Лекция 5 Дифракция Фраунгофера. 4

1. Дифракция от одной прямоугольной щели. 4

2. Дифракционная решетка. 4

3. Голография. 4

Лекция 6 Поляризация света. 4

1. Естественный и поляризованный свет. 4

2. Поляризация света при отражении. Закон Брюстера. 4

3. Явление двойного лучепреломления и его особенности. Дихроизм. 4

4. Природа двойного лучепреломления. 4

5. Применение поляризованного света. 4

Лекция 7 Распространение света в веществе. 4

1. Дисперсия света. 4

2. Поглощение света. 4

3. Рассеяние света. 4

Лекция 8 Тепловое излучение. 4

1. Характеристики теплового излучения. 4

2. Поглощательная и отражательная способности тел. 4

3. 3аконы теплового излучения. 4

4. Оптическая пирометрия. 4

Лекция 9 Фотоэффект. 4

1. Законы внешнего фотоэффекта. 4

2. Уравнение Эйнштейна для фотоэффекта. 4

3. Фотон и его свойства. 4

4. Эффект Комптона. 4

5. Люминесценция, фотолюминесценция и ее основные закономерности. 4

6. Физические принципы устройства приборов ночного видения. 4

Лекция 10 Теория атома водорода по Бору. 4

1. Линейчатый спектр атома водорода. 4

2. Модели атома Томсона и Резерфорда. 4

3. Постулаты Бора. 4

4. Спектр атома водорода по Бору. 4

Лекция 11 Элементы квантовой механики. 4

1. Корпускулярно-волновой дуализм свойств вещества. Гипотеза де Бройля. 4

2. Природа волн де Бройля. 4

3. Соотношение неопределенностей Гейзенберга. 4

4. Уравнение Шредингера. Волновая функция. 4

5. Физический смысл волновой функции. 4

Лекция 12 Атом водорода в квантовой механике. 4

1. Уравнение Шредингера для атома водорода. 4

2. Квантовые числа. 4

3. Спин электрона. 4

Лекция 13 Оптические квантовые генераторы.. 4

1. Физические основы работы ОКГ. Спонтанное и индуцированное излучение. 4

2. Термодинамическое равновесие. Нормальная населенность уровней. 4

3. Неравновесное состояние. Инверсия населенности уровней. 4

4. Рубиновый лазер. 4

5. Газовый лазер. 4

Лекция 14 Атомное ядро и основы ядерной энергетики. 4

1. Состав и характеристики ядра. 4

2. Энергия связи и дефект масс. 4

3. Ядерные силы.. 4

4. Радиоактивность. 4

Лекция 15. 4

1. Реакция деления тяжелых ядер. 4

2. Цепная реакция деления. 4

3. Схема устройства ядерной бомбы.. 4

4. Управляемая цепная реакция. Ядерные реакторы. 4

5. Термоядерная реакция синтеза легких ядер. 4

6. Принципиальная схема устройства термоядерной бомбы.. 4

7. Проблемы управления термоядерной реакцией. 4

Лекция 16 Элементарные частицы.. 4

1. Космические лучи. 4

2. Элементарные частицы.. 4

3. Основные свойства. 4

4. Характеристики элементарных частиц. 4

5. Мюоны и их свойства. 4

6. Мезоны и их свойства. 4

7. Частицы и античастицы.. 4

8. Классификация элементарных частиц. Кварки. 4


Лекция 1
Элементы геометрической оптики.

Еще до установления природы света были известны следующие основные законы оптики:

Закон прямолинейного распространения света.

Длины световых волн воспринимаемых глазом очень малы (порядка м). Поэтому рассмотрение видимого света приближенно можно рассматривать отвлекаясь от его волновой природы и полагая, что свет распространяется вдоль некоторых линий, называемых лучами. В этом приближении законы оптики можно сформулировать на языке геометрии. Поэтому раздел оптики, в котором пренебрегают конечностью длин волн () называется геометрической оптикой. Другое название этого раздела лучевая оптика. Свет в оптически однородной среде распространяется прямолинейно. Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их точечными источниками света (источники, размеры которых значительно меньше освещаемого предмета и расстояния от него). Этот закон нарушается при прохождении света через малые отверстия или освещении малых преград.

Закон независимости световых лучей.

Эффект производимый отдельным лучом, не зависит от того действуют ли одновременно остальные лучи или они устранены. Лучи при пересечении не изменяют друг друга. Пересечение лучей не мешает каждому из них распространяться независимо друг от друга. Этот закон справедлив лишь при небольших интенсивностях света. При интенсивностях, достигаемых с помощью лазеров, независимость световых лучей нарушается.

Если свет падает на границу двух оптически прозрачных сред, то падающий луч разделяется на два: отраженный и преломленный, направления которых задаются законами отражения и преломления.

Закон отражения света: отраженный луч лежит в одной плоскости с падающим и перпендикуляром, проведенным к границе раздела сред в точке падения. При этом угол падения равен углу отражения (рис.1)

Рис. 1.

Закон преломления света: преломленный луч лежит в одной плоскости с падающим и перпендикуляром, проведенным к границе раздела сред в точке падения. При этом отношение синуса угла падения к углу преломления есть величина постоянная для данных сред: , где - относительный показатель преломления второй среды относительно первой.

Если луч шел из второй среды в первую, то вследствие обратимости световых лучей относительный показатель преломления первой среды относительно второй записывается в виде: . Следовательно, .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления: .

Абсолютным показателем преломления называется величина равная отношению скорости света в вакууме к фазовой скорости волны в среде : . Фазовая скорость волны в среде определяется величинами магнитной и электрической проницаемости среды и связана со скоростью света по формуле: . Следовательно, абсолютный показатель преломления среды равен: .

Глава 3. Оптика

Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:

  • геометрическая или лучевая оптика , в основе которой лежит представление о световых лучах;
  • волновая оптика , изучающая явления, в которых проявляются волновые свойства света;
  • квантовая оптика , изучающая взаимодействие света с веществом, при котором проявляются корпускулярные свойства света.

В настоящей главе рассматриваются две первые части оптики. Корпускулярные свойства света будут рассматриваться в гл. V.

Геометрическая оптика

Основные законы геометрической оптики

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

Зеркала

Простейшим оптическим устройством, способным создавать изображение предмета, является плоское зеркало . Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зеркальной поверхности. Это изображение является мнимым, так как оно образуется пересечением не самих отраженных лучей, а их продолжений в «зазеркалье» (рис 3.2.1).

Вследствие закона отражения света мнимое изображение предмета располагается симметрично относительно зеркальной поверхности. Размер изображения равен размеру самого предмета.

Сферическим зеркалом называют зеркально отражающую поверхность, имеющую форму сферического сегмента. Центр сферы, из которой вырезан сегмент, называют оптическим центром зеркала . Вершину сферического сегмента называют полюсом . Прямая, проходящая через оптический центр и полюс зеркала, называется главной оптической осью сферического зеркала. Главная оптическая ось выделена из всех других прямых, проходящих через оптический центр, только тем, что она является осью симметрии зеркала.

Сферические зеркала бывают вогнутыми и выпуклыми . Если на вогнутое сферическое зеркало падает пучок лучей, параллельный главной оптической оси, то после отражения от зеркала лучи пересекутся в точке, которая называется главным фокусом F зеркала. Расстояние от фокуса до полюса зеркала называютфокусным расстоянием и обозначают той же буквой F . У вогнутого сферического зеркала главный фокус действительный. Он расположен посередине между центром и полюсом зеркала (рис 3.2.2).

Следует иметь в виду, что отраженные лучи пересекаются приблизительно в одной точке только в том случае, если падающий параллельный пучок был достаточно узким (так называемый параксиальный пучок ).

Главный фокус выпуклого зеркала является мнимым. Если на выпуклое зеркало падает пучок лучей, параллельных главной оптической оси, то после отражения в фокусе пересекутся не сами лучи, а их продолжения (рис 3.2.3).

Фокусным расстояниям сферических зеркал приписывается определенный знак: для вогнутого зеркала для выпуклого где R – радиус кривизны зеркала.

Изображение какой-либо точки A предмета в сферическом зеркале можно построить с помощью любой пары стандартных лучей:

  • луч AOC , проходящий через оптический центр зеркала; отраженный луч COA идет по той же прямой;
  • луч AFD , идущий через фокус зеркала; отраженный луч идет параллельно главной оптической оси;
  • луч AP , падающий на зеркало в его полюсе; отраженный луч симметричен с падающим относительно главной оптической оси.
  • луч AE , параллельный главной оптической оси; отраженный луч EFA 1 проходит через фокус зеркала.

На рис 3.2.4 перечисленные выше стандартные лучи изображены для случая вогнутого зеркала. Все эти лучи проходят через точку A" , которая является изображением точки A . Все остальные отраженные лучи также проходят через точку A" . Ход лучей, при котором все лучи, вышедшие из одной точки, собираются в другой точке, называется стигматическим . Отрезок A"B" является изображением предмета AB . Аналогичны построения для случая выпуклого зеркала.

Положение изображения и его размер можно также определить с помощью формулы сферического зеркала :

Здесь d – расстояние от предмета до зеркала, f – расстояние от зеркала до изображения. Величины d и f подчиняются определенному правилу знаков:

  • d > 0 и f > 0 – для действительных предметов и изображений;
  • d < 0 и f < 0 – для мнимых предметов и изображений.

Для случая, изображенного на рис 3.2.4, имеем:

F > 0 (зеркало вогнутое); d = 3F > 0 (действительный предмет).

По формуле сферического зеркала получаем: следовательно, изображение действительное.

Если бы на месте вогнутого зеркала стояло выпуклое зеркало с тем же по модулю фокусным расстоянием, мы получили бы следующий результат:

F < 0, d = –3F > 0, – изображение мнимое.

Линейное увеличение сферического зеркала Γ определяется как отношение линейных размеров изображения h " и предмета h .

Величине h " удобно приписывать определенный знак в зависимости от того, является изображение прямым (h" > 0) или перевернутым (h" < 0). Величина h всегда считается положительной. При таком определении линейное увеличение сферического зеркала выражается формулой, которую можно легко получить из рис 3.2.4:

В первом из рассмотренных выше примеров – следовательно, изображение перевернутое, уменьшенное в 2 раза. Во втором примере – изображение прямое, уменьшенное в 4 раза.

Тонкие линзы

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой .

Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими . Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше (рис. 3.3.1).

Прямая, проходящая через центры кривизны O 1 и O 2 сферических поверхностей, называется главной оптической осью линзы. В случае тонких линз приближенно можно считать, что главная оптическая ось пересекается с линзой в одной точке, которую принято называть оптическим центром линзы O . Луч света проходит через оптический центр линзы, не отклоняясь от первоначального направления. Все прямые, проходящие через оптический центр, называютсяпобочными оптическими осями .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F , которая называется главным фокусом линзы. У тонкой линзы имеются два главных фокуса, расположенных симметрично на главной оптической оси относительно линзы. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, после прохождения через линзу также фокусируются в точку F" , которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью, перпендикулярной главной оптической оси и проходящей через главный фокус (рис. 3.3.2). Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием. Оно обозначаетcя той же буквой F .

Основное свойство линз – способность давать изображения предметов . Изображения бывают прямыми и перевернутыми , действительными и мнимыми ,увеличенными и уменьшенными .

Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей. Примеры таких построений представлены на рис. 3.3.3 и 3.3.4.

Следует обратить внимание на то, что некоторые из стандартных лучей, использованных на рис. 3.3.3 и 3.3.4 для построения изображений, не проходят через линзу. Эти лучи реально не участвуют в образовании изображения, но они могут быть использованы для построений.

Положение изображения и его характер (действительное или мнимое) можно также рассчитать с помощью формулы тонкой линзы . Если расстояние от предмета до линзы обозначить через d , а расстояние от линзы до изображения через f , то формулу тонкой линзы можно записать в виде:

Формула тонкой линзы аналогична формуле сферического зеркала. Ее можно получить для параксиальных лучей из подобия треугольников на рис. 3.3.3 или 3.3.4.

Фокусным расстояниям линз принято приписывать определенные знаки: для собирающей линзы F > 0, для рассеивающей F < 0.

Величины d и f также подчиняются определенному правилу знаков:
d > 0 и f > 0 – для действительных предметов (то есть реальных источников света, а не продолжений лучей, сходящихся за линзой) и изображений;
d < 0 и f < 0 – для мнимых источников и изображений.

Для случая, изображенного на рис. 3.3.3, имеем: F > 0 (линза собирающая), d = 3F > 0 (действительный предмет).

По формуле тонкой линзы получим: следовательно, изображение действительное.

В случае, изображенном на рис. 3.3.4, F < 0 (линза рассеивающая), d = 2|F | > 0 (действительный предмет), то есть изображение мнимое.

В зависимости от положения предмета по отношению к линзе изменяются линейные размеры изображения. Линейным увеличением линзы Γ называют отношение линейных размеров изображения h" и предмета h . Величине h" , как и в случае сферического зеркала, удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутыхΓ < 0. Из подобия треугольников на рис. 3.3.3 и 3.3.4 легко получить формулу для линейного увеличения тонкой линзы:

В рассмотренном примере с собирающей линзой (рис. 3.3.3): d = 3F > 0, следовательно, – изображение перевернутое и уменьшенное в 2 раза.

В примере с рассеивающей линзой (рис. 3.3.4): d = 2|F | > 0, ; следовательно, – изображение прямое и уменьшенное в 3 раза.

Оптическая сила D линзы зависит как от радиусов кривизны R 1 и R 2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Во многих оптических приборах свет последовательно проходит через две или несколько линз. Изображение предмета, даваемое первой линзой, служит предметом (действительным или мнимым) для второй линзы, которая строит второе изображение предмета. Это второе изображение также может быть действительным или мнимым. Расчет оптической системы из двух тонких линз сводится к двукратному применению формулы линзы, при этом расстояние d 2 от первого изображения до второй линзы следует положить равным величине l f 1 , где l – расстояние между линзами. Рассчитанная по формуле линзы величина f 2 определяет положение второго изображения и его характер (f 2 > 0 – действительное изображение, f 2 < 0 – мнимое). Общее линейное увеличение Γ системы из двух линз равно произведению линейных увеличений обеих линз: Γ = Γ 1 · Γ 2 . Если предмет или его изображение находятся в бесконечности, то линейное увеличение утрачивает смысл.

Частным случаем является телескопический ход лучей в системе из двух линз, когда и предмет, и второе изображение находятся на бесконечно больших расстояниях. Телескопический ход лучей реализуется в зрительных трубах – астрономической трубе Кеплера и земной трубе Галилея (см. § 3.5).

Тонкие линзы обладают рядом недостатков, не позволяющих получать высококачественные изображения. Искажения, возникающие при формировании изображения, называются аберрациями . Главные из них – сферическая и хроматическая аберрации. Сферическая аберрация проявляется в том, что в случае широких световых пучков лучи, далекие от оптической оси, пересекают ее не в фокусе. Формула тонкой линзы справедлива только для лучей, близких к оптической оси. Изображение удаленного точечного источника, создаваемое широким пучком лучей, преломленных линзой, оказывается размытым.

Хроматическая аберрация возникает вследствие того, что показатель преломления материала линзы зависит от длины волны света λ. Это свойство прозрачных сред называется дисперсией. Фокусное расстояние линзы оказывается различным для света с разными длинами волн, что приводит к размытию изображения при использовании немонохроматического света.

В современных оптических приборах применяются не тонкие линзы, а сложные многолинзовые системы, в которых удается приближенно устранить различные аберрации.

Формирование собирающей линзой действительного изображения предмета используется во многих оптических приборах, таких как фотоаппарат, проектор и т. д.

Фотоаппарат представляет собой замкнутую светонепроницаемую камеру. Изображение фотографируемых предметов создается на фотопленке системой линз, которая называется объективом . Специальный затвор позволяет открывать объектив на время экспозиции.

Особенностью работы фотоаппарата является то, что на плоской фотопленке должны получаться достаточно резкими изображения предметов, находящихся на разных расстояниях.

В плоскости фотопленки получаются резкими только изображения предметов, находящихся на определенном расстоянии. Наведение на резкость достигается перемещением объектива относительно пленки. Изображения точек, не лежащих в плоскости резкого наведения, получаются размытыми в виде кружков рассеяния. Размер d этих кружков может быть уменьшен путем диафрагмирования объектива, т.е. уменьшения относительного отверстия a / F (рис. 3.3.5). Это приводит к увеличению глубины резкости.

Рисунок 3.3.5. Фотоаппарат

Проекционный аппарат предназначен для получения крупномасштабных изображений. Объектив O проектора фокусирует изображение плоского предмета (диапозитив D ) на удаленном экране Э (рис. 3.3.6). Система линз K , называемая конденсором , предназначена для того, чтобы сконцентрировать свет источника S на диапозитиве. На экране Э создается действительное увеличенное перевернутое изображение. Увеличение проекционного аппарата можно менять, приближая или удаляя экран Э с одновременным изменением расстояния между диапозитивом D и объективом O .


Похожая информация.