Что такое атом? Из каких частей он состоит и в чем измеряется его масса? Атом - «Энциклопедия.

Рассмотрим зависимость некоторых свойств атомов от строения их электронных оболочек. Остановимся, прежде всего, на закономерностях изменения атомных и ионных радиусов.

Электронные облака не имеют резко очерченных границ. Поэтому понятие о размере атома не является строгим. Но если представить себе атомы в кристаллах простого вещества в виде соприкасающихся друг с другом шаров, то расстояние между центрами соседних шаров (т. е. между ядрами соседних атомов) можно принять равным удвоенному радиусу атома. Так, наименьшее межъядерное расстояние в кристаллах меди равно ; это позволяет считать, что радиус атома меди равен половине этой величины, т. е. .

Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода с увеличением Z проявляется тенденция к уменьшению размеров атома, что особенно четко наблюдается в коротких периодах (радиусы атомов приведены в нм):

Это объясняется увеличивающимся притяжением электронов внешнего слоя к ядру по мере возрастания его заряда.

С началом застройки нового электронного слоя, более удаленного от ядра, т. е. при переходе к следующему периоду, атомные радиусы возрастают (сравните, например, радиусы атомов фтора и натрия). В результате в пределах подгруппы с возрастанием заряда ядра размеры атомов увеличиваются. Приведем в качестве примера значения атомных радиусов (в нм) элементов некоторых главных подгрупп:

Электроны наружного слоя, наименее прочно связанные с ядром, могут отрываться от атома и присоединяться к другим атомам, входя в состав наружного слоя последних.

Атомы, лишившиеся одного или нескольких электронов, становятся заряженными положительно, так как заряд ядра атома превышает сумму зарядов оставшихся электронов. Наоборот, атомы, присоединившие к себе лишние электроны, заряжаются отрицательно. Образующиеся заряженные частицы называются ионами.

Ионы обозначают теми же символами, что и атомы, указывая справа вверху их заряд: например, положительный трехзарядный ион алюминия обозначают , отрицательный однозарядный ион хлора - .

Потеря атомов электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов - к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного нона (аниона) всегда больше радиуса соответствующего электронейтрального атома. Так, радиус атома калия составляет , а радиус иона радиусы атома хлора и иона соответственно равны 0,099 и . При этом радиус иона тем сильней отличается от радиуса атома, чем больше заряд иона. Например, радиусы атома хрома и ионов и составляют соответственно 0,127, 0,083 и .

В пределах одной подгруппы радиусы ионов одинакового заряда возрастают с увеличением заряда ядра. Это иллюстрируется следующими примерами (радиусы ионов даны в нм):

Такая закономерность объясняется увеличением числа электронных слоев и растущим удалением внешних электронов от ядра.

Размер атома определяется радиусом его внешней электронной оболочки. Размеры всех атомов ~ 10 ‑10 м. А размер ядра на 5 порядков меньше, всего — 10 -15 м. Наглядно это можно представить так: если атом увеличить до размеров 20-этажного дома, то ядро атома будет выглядеть как миллиметровая пылинка в центральной комнате этого дома. Однако трудно вообразить дом, масса которого прак-тически полностью сосредоточена в этой пылинке. А атом именно таков.

Атомы очень маленькие и очень легкие. Атом во столько раз легче яблока, во сколько раз яблоко легче земного шара. Если мир «потяжелеет» так, что атом станет весить как капля воды, то люди в таком мире станут тяже-лыми, как планеты: дети — как Меркурий и Марс, а взрослые — как Венера и Земля.

Рассмотреть атом нельзя даже с помощью микро-скопа. Лучшие оптиче-ские микроскопы позво-ляют различить детали объекта, если расстояние между ними ~0,2 мкм. В электронном микроско-пе это расстояние уда-лось уменьшить до ~2-3 Å. Различить и сфо-тографировать отдель-ные атомы впервые уда-лось с помощью ионного проектора. Но никто не видел, как устроен атом внутри. Все данные о строении атомов полу-чены из опытов по рассе-янию частиц.

Масса атомного ядра в несколько тысяч раз больше массы его электронной оболочки. Это связано с тем, что ядра атомов состоят из очень тяжелых, по сравнению с электроном, частиц — протонов p и нейтронов n. Их массы почти одинаковы и примерно в 2000 раз больше массы элек-трона. При этом протон — положительно заряженная части-ца, а нейтрон — нейтральная. Заряд протона по величине ра-вен заряду электрона. Число протонов в ядре равно числу электронов в оболочке, это и обеспечивает электрическую нейтральность атома. Число нейтронов может быть различ-ным, в ядре атома легкого водорода нейтронов нет совсем, а в ядре атома углерода их может быть и 6, и 7, и 8.

Масса электрона m e ≈ 0,91 . 10 -30 кг, масса протона m p 1,673 . 10 -27 кг = 1836 m e , мас-са нейтрона m n = 1,675 . 10 ‑27 кг ≈ 1840 m e .

Масса атома меньше суммы масс ядра и электронов на ве-личину Δm, называемую дефектом масс , который возника-ет из-за кулоновского взаимодействия ядра и электронов. Дефект масс у атомов (в отличие от ядер) очень мал, и, хотя он увеличивается с ростом Z , ни у одного атома не превы-шает массы электрона. Материал с сайта

Конечно, атом нельзя по-ложить на весы и взвесить, он слишком мал. Массы атомов сначала определи-ли химики. Причем изме-рили они их в относитель-ных единицах, приняв за единицу массу атома водо-рода и воспользовавшись законом Дальтона, соглас-но которому химические вещества образуются при соединении атомов хими-ческих элементов в строго определенной пропорции. И сейчас массы атомов ча-ще всего измеряют в отно-сительных единицах, но в качестве атомной единицы массы (а. е. м.) используют 1 / 12 массы атома углерода C 12 ,1 а. е. м. = 1,66057 . 10 -27 кг.


«Неужели это возможно в домашних условиях?» - спросите вы. Вполне возможно, только для того, чтобы рассчитать диаметр атома, надо кое-что знать. Например, что атомы многих металлов можно представить в виде маленьких, плотно упакованных шариков. В таком случае атомы-шарики занимают 74 % всего пространства, а остальные 26 % приходятся на пустот ы между ними. Еше надо знать, как связан объем шара (У) с его диаметром UD - эту формулу можно найти в учебнике или в справочнике по математике: V- тГ/Ь. где к = 3,14. Наконец, надо знать очень важную для химии величину, которая называе тся постоянной Авогадро (Л/л) в честь итальянского ученого XIX века Амедео Авогадро (1776-1856). Эта константа показывает, сколько частиц - атомов, ионов или молекул содержится водном моле вещества. Моль - очень удобная для химиков единица измерения, так как в одном моле любого вещест ва содержится одинаковое число частиц. Например. 1 моль воды (18 г), или I моль сахара (343 г), или 1 моль кислорода (32 г) содержит одинаковое число молекул, равное Л"д = 6.02 ¦ !0". Ровно столько же атомов содержит 1 моль алюминия (27 г), или I моль меди (64 г), или I мольсеребра (108 г). А I моль поваренной соли (58,5 г) содержит по 6.02 10" положительно заряженных ионов (катионов) натрия и отрицательно заряженных ионов (анионов) хлора. Понятие «моль» (раньше его называли «грамм-молекулой»,аеще раньше, во времена Менделеева, - «химическим паем») удобно тем, что им можно пользоваться и не зная численного значения постоянной Авогадро. так как ве-щества реагируют друг с другом в соответствии с числом молей в них.
О том, как ученые определили это оіромное число, мы еще поговорим, а пока вернемся к нашей ложке. Итак, пусть в предыдущем опыте нам повезло, и ложка оказалась из серебра высокой пробы с плотностью 10,5 г/см1. Теперь у нас есть все данные, чтобы определить размер «сереб-ряного атома». В I см"серебра содержится 10,5 г: 108 г/моль = 0,097 моль, или 0,097 ¦ 6,02 ¦ I0J1 = 5,84 10" атомов серебра. Если не считать пустоты между атомами, то на долю самих атомов-шари ков придется не 1 см3, а немного меньше - 0,74 см3. Значит, объем одного атома равен 0,74с.м3/5.84- Ю"= 1.27-10 "см3. Осталось только по приведенной выше формуле рассчитать диаметр атома серебра. Он получится очень маленьким: d = 3 10 4 см. пли 0,3 нм (нанометр - одна миллнардная часть метра - самая подходящая единица для измерения таких малых величин).
Все атомы имеют очень малые размеры. Цепочка из миллиона атомов серебра, плотно уложенных друг к другу, протянется всего на 0,3 мм. Для сравнения: если уложить в цепочку миллион маковых зер- нышек диаметром 1 мм, то такая цепочка протянется на 1 км! Из-за малою размера атомов их невозможно увидеть даже и самый сильный оптический микроскоп. Зато ученые придумали другие приборы, позволяющие получать изображения отдельных атомов.
Примерно такие же размеры, как атом серебра, имеют небольшие молекулы - кислорода, азота, метана, волы; все они содержат несколько небольших а томов. Бывают молекулы, которые значительно больше: они содержат много атомов или агомы больших размеров (например, атомы иода). В следующем разделе мы познакомимся с одним из методов измерения размера молекул. А сейчас - некоторые ин тересные и полезные сведения об Авогадро и постоянной, названной его именем.
Итальянский химик Авогадро прожил очень дол гую по меркам того времени жизнь. Он родился в 1776 году в Турине, в Северной Италии. Получил юридическое образование и в возрасте 20 лет был назначен секретарем префектуры. Это были годы, когда в Италии гремела слава молодого французского полководца Наполеона. Однако Авогадро не привлекала ни военная, ни юридическая карьера. Со временем он стал все больше интересоваться естественными науками - физикой и химией, которые изучил самостоятельно. В 1809 году он начал преподавать физику в городе Верчслли, недалеко от Турина, а в 1820 году был назначен профессором математической физики в Туринском университете. В университете Авогадро проработал до преклонного возраста и покинул его лишь в 1850 году. Умер Авогадро в Турине в 1856 году. О его личной жизни сохранилось очень мало сведений. Прославили же Авогадро две статьи, опубликованные в 1811 и 1814 годах. Вначале они не вызвали интереса и были почти забыты. Сегодня же имя Авогадро знают школьники всех стран, если они изучают физику и химию. Закон Авогадро звучит очень просто: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул». Из этого закона следовало, что, измеряя плотность разных газов, можно определять относительные массы, а также состав молекул газообразных соединений. Благодарные потомки на-звали число частиц в одном моле вещества постоянной Авогадро, которую обозначили как JVa. Кстати, само слово «моль» - итальянского, вернее, латинского происхождения. В переводе с латыни moles означает «тяжесть, глыба, громада». На современной двухцентовой итальянской монете изображен купол со шпилем «Антонеллиевой громады» {mole A/ilonelliana), самой высокой конструкции в Италии (167,5 м); интересно, что это сооружение считается символом Турина, родного города Авогадро. Соответственно, molecula (с уменьшительным суффиксом -си/о) - «маленькая масса», как корпускула - «маленькое тело» (так во времена Ломоносова называли молекулы). Помимо указанного значения слово motes на латыни означает «дамба, насыпь, укрепленная большими камнями» (вспомним слово «мол» - сооружение в гаванях для защиты судов от морских волн)- Тот же корень в латинском слове mola - «жернов» («громадный камень») и в глаголе то/о - «молоть». Отсюда и молот с молотком, и моляр - зуб, размалывающий твердую пищу, как жернов на мельнице, и даже вредная моль - насекомое, измельчающее, стирающее вещи в муку
Постоянная Авогадро - огромное число, с трудом поддающееся воображению; оно, к примеру, в 4 миллиарда раз больше, чем расстояние от Земли до Солнца, выраженное в миллиметрах! Это означает, что атомы и молекулы очень маленькие - раз их так много помещается в сравнительно небольшом количестве вещества. Еще в XIX веке ученым было очевидно, что. постольку атомы и молекулы очень маленькие и никто их еше не видел, постоянная Авогадро должна быть очень велика. Постепенно физики научились определять размеры молекул и значение постоянной Авогадро - сначала очень грубо, приблизительно, затем все точнее. Прежде всего им было понятно, что обе вели-чины связаны между собой: чем меньше окажутся атомы и молекулы, тем больше получится постоянная Авогадро.
Преподаватели и популяризаторы химии придумали множество эффектных способов, чтобы наглядно показать грандиозность этого числа. Вот некоторые из них.
В пустыне Сахара содержится менее трех молей самых мелких песчинок.
Если объем футбольного мяча увеличить в Л^ раз, то в таком мяче поместится Земной шар. Если же в NA раз увеличить диаметр мяча, то в нем поместится самая большая галактика, содержащая сотни миллиардов звезд. Кстати, число звезд во Вселенной примерно равно постоянной Авогадро.
Если взять 100 г красителя, пометить каким-либо способом все его молекулы, вылить этот краситель в море и подождать, пока он равномерно распределится по всем морям и океанам до самого дна, то, зачерпнув в любом месте Земного шара стакан воды, мы обязательно обнаружим в нем не один десяток «меченых» молекул.
При каждом вдохе человека в его легкие попадает хотя бы несколько молекул кислорода и азога, которые содержались в последнем выдохе Юлия Цезаря (44 год до н. э.).
Если взять моль долларовых бумажек, они покроют все материки двухкилометровым плотным слоем,
В древности на Востоке придумали такую легенду. В сказочном царстве находится огромная гранитная скала. Представим себе, что она имеет форму куба с ребром, равным 1 км. Раз в столетие на скалу садится ворон и чистит об нее клюв. Если предположить, что при этом скала стирается на 0,0001 г. то число лет, за которое от скалы не останется ни одной песчинки, меньше, чем постоянная Авогадро. Ответ редакции

В 1913 году датский физик Нильс Бор предложил свою теорию строения атома. За основу он взял планетарную модель атома, разработанную физиком Резерфордом. В ней атом уподоблялся объектам макромира — планетарной системе, где планеты двигаются по орбитам вокруг большой звезды. Аналогично в планетарной модели атома электроны движутся по орбитам вокруг расположенного в центре тяжёлого ядра.

Бор ввёл в теорию атома идею квантования. Согласно ей, электроны могут двигаться только по фиксированным орбитам, соответствующим определённым энергетическим уровням. Именно модель Бора стала основой для создания современной квантово-механической модели атома. В этой модели ядро атома, состоящее из положительно заряженных протонов и не имеющих заряда нейтронов, тоже окружено отрицательно заряженными электронами. Однако согласно квантовой механике, для электрона нельзя определить какую-то точную траекторию или орбиту движения — есть только область, в которой находятся электроны с близким энергетическим уровнем.

Что находится внутри атома?

Атомы состоят из электронов, протонов и нейтронов. Нейтроны были открыты после того, как физиками была разработана планетарная модель атома. Лишь в 1932 году, проводя серию опытов, Джеймс Чедвик обнаружил частицы, не имеющие никакого заряда. Отсутствие заряда подтверждалось тем, что эти частицы никак не реагировали на электромагнитное поле.

Само ядро атома образуют тяжёлые частицы — протоны и нейтроны: каждая из этих частиц почти в две тысячи раз тяжелее электрона. Протоны и нейтроны также имеют схожие размеры, но протоны обладают положительным зарядом, а нейтроны не имеют заряда вообще.

В свою очередь, протоны и нейтроны состоят из элементарных частиц, называемых кварками. В современной физике кварки являются самой маленькой, основной частицей материи.

Размеры самого атома во много раз превышают размеры ядра. Если увеличить атом до размеров футбольного поля, то размеры его ядра могут быть сопоставимы с теннисным мячиком в центре такого поля.

В природе существует множество атомов, различающихся размерами, массой и другими характеристиками. Совокупность атомов одного вида называется химическим элементом. На сегодняшний день известно более ста химических элементов. Их атомы различаются размерами, массой, а также строением.

Электроны внутри атома

Отрицательно заряженные электроны двигаются вокруг ядра атома, образуя своего рода облако. Массивное ядро притягивает электроны, но энергия самих электронов позволяет им «убегать» дальше от ядра. Таким образом, чем больше энергия электрона, тем дальше от ядра он находится.

Значение энергии электронов не может быть произвольным, оно соответствует чётко определенному набору энергетических уровней в атоме. То есть энергия электрона изменяется скачкообразно от одного уровня к другому. Соответственно, и двигаться электрон может только в рамках ограниченной электронной оболочки, соответствующей тому или иному энергетическому уровню — в этом смысл постулатов Бора.

Получив больше энергии, электрон «перескакивает» в более высокий от ядра слой, потеряв энергию — наоборот, в более низкий слой. Таким образом, облако электронов вокруг ядра упорядочено в виде нескольких «нарезанных» слоев.

История представлений об атоме

Само слово «атом» происходит от греческого «неделимый» и восходит к идеям древнегреческих философов о наименьшей неделимой части материи. В средние века химики убедились в том, что некоторые вещества не могут быть подвергнуты дальнейшему расщеплению на составляющие элементы. Такие наименьшие частицы вещества и получили название атомов. В 1860 году на международном съезде химиков в Германии это определение было официально закреплено в мировой науке.

В конце XIX — начале XX века физиками были открыты субатомные частицы и стало ясно, что атом в действительности не является неделимым. Сразу же были выдвинуты теории о внутреннем строении атома, одной из первых среди которых стала модель Томсона или модель «пудинга с изюмом». Согласно этой модели, маленькие электроны находились внутри массивного положительно заряженного тела — как изюм внутри пудинга. Однако, практические эксперименты химика Резерфорда опровергли эту модель и привели того к созданию планетарной модели атома.

Развитие планетарной модели Бором наряду с открытием в 1932 году нейтронов сформировало основу для современной теории о строении атома. Следующие этапы в развитии знаний об атоме уже связаны с физикой элементарных частиц: кварков, лептонов, нейтринов, фотонов, бозонов и других.

Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь. Радиус зависит от положения атома, его типа, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. Соответственно, самый маленький атом - это атом гелия, имеющий радиус 32 пм, а самый большой - атом цезия (225 пм) .

Атом – уникальная частица мироздания. Эта статья постарается донести до читателя информацию об этом элементе материи. Здесь мы рассмотрим такие вопросы: каков диаметр атома и его размеры, какие он имеет качественные параметры, в чем заключается его роль во Вселенной.

Знакомство с атомом

Атом – составная частица веществ, имеющая микроскопические размер и массу. Это наименьшая часть элементов химической природы с невероятно малыми размерами и массой.

Атомы строятся из двух основных структурных элементов, а именно из электронов и атомного ядра, которое, в свою очередь, образуется протонами и нейтронами. Число протонов может отличаться от количества нейтронов. Как в химии, так и в физике атомы, в которых величина протонов соизмерима с количеством электронов, называют электрически нейтральными. Если число электронов выше или ниже числа протонов, то атом, приобретая положительный или отрицательный заряд, становится ионом.

Исторические данные

Благодаря достижениям науки в области физики и химии было совершено множество открытий относительно природы атома, его строения и возможностей. Были произведены многочисленные опыты и расчеты, в ходе которых человек смог ответить на такие вопросы: каков диаметр атома, его размер, и многое другое.

Впервые понятие атома было открыто и сформулировано философами древней Греции и Рима. В XVII–XVIII веках химики смогли при помощи экспериментов доказать идею об атоме как наименьшей частице вещества. Они показали, что множество веществ можно расщеплять многократно при помощи химических методов. Однако в дальнейшем открытые физиками субатомные частицы показали, что даже атом можно разделить, а строится он из субатомных компонентов.

Международный съезд ученых по химии в Карлсруэ, расположенном на территории Германии, в 1860 г. принял решение относительно понятия об атомах и молекулах, где атом рассматривается как самая маленькая часть химических элементов. Следовательно, он также входит в состав веществ простого и сложного типа.

Диаметр атома водорода был изучен одним из самых первых. Однако его расчеты были произведены множество раз и последние из них, опубликованные в 2010 г., показали, что он на 4 % меньше, чем предполагалось ранее (10 -8). Показатель общего значения величины атомного ядра соответствует числу 10 -13 -10 -12 , а порядок величины всего диаметра равен 10 -8 . Это вызвало множество противоречий и проблем, поскольку сам водород по праву относится к основным составным частям всей обозримой Вселенной, а подобная несостыковка вынуждает совершать множество перерасчетов по отношению к фундаментальным утверждениям.

Атом и его модель

В настоящее время известно пять основных моделей атома, отличающиеся между собой, прежде всего, временными рамками представлениями об его устройстве. Рассмотрим непосредственно модели:

  • Кусочки, из которых состоит материя. Демокрит считал, что любое свойство веществ должно определяться его формами, массой и другим рядом практических характеристик. Например, огонь может обжечь, потому что его атомы острые. Согласно мнению Демокрита, даже душа образована атомами.
  • Атомная модель Томсона, созданная в 1904 г., самим Дж. Дж. Томсоном. Он предположил, что атом можно принимать в качестве положительно заряженного тела, заключенного внутри электронов.
  • Ранняя планетарная атомная модель Нагаоки, созданная в 1904 году, полагала, что устройство атома аналогично системе Сатурна. Ядро маленьких размеров и имеющее положительный показатель заряда окружено электронами, которые двигаются по кольцам.
  • Атомная планетарная модель, открытая Бором и Резерфордом. В 1911 г. Э. Резерфорд, после того как провел целый ряд экспериментов, стал полагать, что атом схож с планетарной системой, где у электронов есть орбиты, по которым они двигаются вокруг ядра. Однако это предположение шло в разрез с данными классической электродинамики. Чтобы доказать состоятельность этой теории, Нильс Бор ввел понятие о постулатах, утверждающих и показывающих, что электрону не требуется расходовать энергию, так как он находится в определенном, специальном энергетическом состоянии. Изучение атома в дальнейшем привело к тому, что появилась квантовая механика, которая смогла объяснить множество противоречий, которые можно было наблюдать.
  • Квантово-механическая атомная модель утверждает, что центральная основа рассматриваемой частицы состоит из ядра, образующегося из протонов, а также нейтронов и электронов, движущихся вокруг него.

Особенности строения

Размер атома ранее предопределял, что это неделимая частица. Однако множество опытов и экспериментов показали нам, что он строится из субатомных частиц. Любой атом состоит из электронов, протонов и нейтронов, за исключением водорода – 1, который не включает в себя последние.

Стандартная модель показывает, что протоны и нейтроны образованы посредством взаимодействия между кварками. Они относятся к фермионам, наряду с лептонами. В настоящее время различают 6 видов кварков. Протоны своим образованием обязаны двум u-кварками и одному d-кварку, а нейтрон – одному u-кварку и двум d-кварками. Ядерное взаимодействие сильного типа, которым связываются кварки, передается при помощи глюонов.

Движение электронов в атомном пространстве предопределяется их «желанием» быть ближе к ядру, другими словами, притягиваться, а также кулоновскими силами взаимодействия между ними. Эти же типы сил удерживают каждый электрон в потенциальном барьере, окружившем ядро. Орбита движения электронов обуславливает величину диаметра атома, равную прямой линии, проходящей от одной точки в окружности к другой, а также через центр.

У атома имеется его спин, который представлен собственным импульсным моментом и лежит вне понимания общей природы материи. Описывается при помощи квантовой механики.

Размеры и масса

Каждое ядро атома с одинаковым показателем числа протонов относится к общему химическому элементу. К изотопам относятся представители атомов одного элемента, но имеющие различие в нейтронном количестве.

Поскольку в физике строение атома указывают на то, что основную их массу составляют протоны и нейтроны, то общую сумму данных частиц имеют массовым числом. Выражение атомной массы в состоянии спокойствия происходит посредством использования атомных единиц массы (а. е. м.), которые по-другому именуются дальтонами (Да).

Размер атома не имеет четко выраженных границ. Потому определяется он при помощи измерения расстояния между ядрами одинакового типа атомов, химически связанных между собой. Другой способ измерения возможен при расчете длительности пути от ядра до дальнейшей из имеющихся электронных орбит стабильного типа. Периодическая система элементов Д. И. Менделеева располагает в себе атомы по размеру, от меньших к большим, в направлении столбца сверху вниз, движение по направлению слева направо также основано на уменьшении их размеров.

Время распада

Все хим. элементы имеют изотопы, от одного и выше. Они содержат в себе нестабильное ядро, подверженное радиоактивному распаду, вследствие чего происходит испускание частиц или электромагнитного излучения. Радиоактивным называют тот изотоп, у которого величина радиуса сильного взаимодействия выходит за пределы дальних точек диаметра. Если рассмотреть на примере аурума, то изотопом будет атом Au, за пределы диаметра которого во всех направлениях "вылетают" излучающиеся частицы. Изначально диаметр атома золота соответствует величине двух радиусов, каждый из которых равен 144 пк, а частицы, выходящие за пределы этого расстояния от ядра, будут считаться изотопами. Существует три типа распада: альфа-, бета- и гамма излучение.

Понятие о валентности и наличии энергетических уровней

Мы уже ознакомились с ответами на такие вопросы: каков диаметр атома, его размер, ознакомились с понятием распада атома и т. д. Однако, помимо этого, существуют и такие характеристики атомов, как величина энергетических уровней и валентность.

Электроны, двигающиеся вокруг атомного ядра, обладают потенциальной энергией и пребывают в связанном состоянии, располагаясь на возбужденном уровне. В соответствии с квантовой моделью, электрон занимает только дискретное количество энергетических уровней.

Валентность – это общая способность атомов, у которых на электронной оболочке имеется свободное место, устанавливать связи химического типа с другими атомными единицами. Посредством установления химических связей атомы стараются заполнить свой слой внешней валентной оболочки.

Ионизация

В результате воздействия высокого значения напряженности на атом он может подвергаться необратимой деформации, которая сопровождается электронным отрывом.

Это приводит к ионизации атомов, в ходе которой они отдают электрон(ы) и претерпевают превращение из стабильного состояния в ионы с положительным зарядом, иначе именуемые катионами. Этот процесс требует определенной энергии, которую называют потенциалом ионизации.

Подводя итоги

Изучение вопросов о строении, особенностях взаимодействия, качественных параметрах, о том, каков же диаметр атома и какие он имеет размеры, все это позволило человеческому разуму совершить невероятный труд, помогающий лучше осознать и понять устройство всей материи вокруг нас. Эти же вопросы позволили открыть человеку понятия об электроотрицательности атома, его дисперсном притяжении, валентных возможностях, определить длительность радиоактивного распада и многое другое.