Определение степенных уравнений. Показательные уравнения

На этапе подготовки к заключительному тестированию учащимся старших классов необходимо подтянуть знания по теме «Показательные уравнения». Опыт прошлых лет свидетельствует о том, что подобные задания вызывают у школьников определенные затруднения. Поэтому старшеклассникам, независимо от уровня их подготовки, необходимо тщательно усвоить теорию, запомнить формулы и понять принцип решения таких уравнений. Научившись справляться с данным видом задач, выпускники смогут рассчитывать на высокие баллы при сдаче ЕГЭ по математике.

Готовьтесь к экзаменационному тестированию вместе со «Школково»!

При повторении пройденных материалов многие учащиеся сталкиваются с проблемой поиска нужных для решения уравнений формул. Школьный учебник не всегда находится под рукой, а отбор необходимой информации по теме в Интернете занимает долгое время.

Образовательный портал «Школково» предлагает ученикам воспользоваться нашей базой знаний. Мы реализуем совершенно новый метод подготовки к итоговому тестированию. Занимаясь на нашем сайте, вы сможете выявить пробелы в знаниях и уделить внимание именно тем заданиям, которые вызывают наибольшие затруднения.

Преподаватели «Школково» собрали, систематизировали и изложили весь необходимый для успешной сдачи ЕГЭ материал в максимально простой и доступной форме.

Основные определения и формулы представлены в разделе «Теоретическая справка».

Для лучшего усвоения материала рекомендуем попрактиковаться в выполнении заданий. Внимательно просмотрите представленные на данной странице примеры показательных уравнений с решением, чтобы понять алгоритм вычисления. После этого приступайте к выполнению задач в разделе «Каталоги». Вы можете начать с самых легких заданий или сразу перейти к решению сложных показательных уравнений с несколькими неизвестными или . База упражнений на нашем сайте постоянно дополняется и обновляется.

Те примеры с показателями, которые вызвали у вас затруднения, можно добавить в «Избранное». Так вы можете быстро найти их и обсудить решение с преподавателем.

Чтобы успешно сдать ЕГЭ, занимайтесь на портале «Школково» каждый день!

На канал на youtube нашего сайта сайт, чтобы быть в курсе всех новых видео уроков.

Для начала вспомним основные формулы степеней и их свойства.

Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n /a m = a n — m

Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.

Примеры показательных уравнений:

В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.

Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0

Теперь разберем как решаются показательные уравнения?

Возьмем простое уравнение:

2 х = 2 3

Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:

2 х = 2 3
х = 3

Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.

Теперь подведем итоги нашего решения.

Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Теперь прорешаем несколько примеров:

Начнем с простого.

Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.

x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2

В следующем примере видно, что основания разные это 3 и 9.

3 3х — 9 х+8 = 0

Для начала переносим девятку в правую сторону, получаем:

Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n) m = a nm .

3 3х = (3 2) х+8

Получим 9 х+8 =(3 2) х+8 =3 2х+16

3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.

3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.

Смотрим следующий пример:

2 2х+4 — 10 4 х = 2 4

В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n) m = a nm .

4 х = (2 2) х = 2 2х

И еще используем одну формулу a n a m = a n + m:

2 2х+4 = 2 2х 2 4

Добавляем в уравнение:

2 2х 2 4 — 10 2 2х = 24

Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х,вот и ответ — 2 2х мы можем вынести за скобки:

2 2х (2 4 — 10) = 24

Посчитаем выражение в скобках:

2 4 — 10 = 16 — 10 = 6

Все уравнение делим на 6:

Представим 4=2 2:

2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.

Решим уравнение:

9 х – 12*3 х +27= 0

Преобразуем:
9 х = (3 2) х = 3 2х

Получаем уравнение:
3 2х — 12 3 х +27 = 0

Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены . Число с наименьшей степенью заменяем:

Тогда 3 2х = (3 х) 2 = t 2

Заменяем в уравнении все степени с иксами на t:

t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t 1 = 9
t 2 = 3

Возвращаемся к переменной x .

Берем t 1:
t 1 = 9 = 3 х

Стало быть,

3 х = 9
3 х = 3 2
х 1 = 2

Один корень нашли. Ищем второй, из t 2:
t 2 = 3 = 3 х
3 х = 3 1
х 2 = 1
Ответ: х 1 = 2; х 2 = 1.

На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.

Вступайте в группу

Показательными называются уравнения, в которых неизвестное содержится в показателе степени. Простейшее показательное уравнение имеет вид: а х = а b , где а> 0, а 1, х - неизвестное.

Основные свойства степеней, при помощи которых преобразуются показательные уравнения: а>0, b>0.

При решении показательных уравнений пользуются также следующими свойствами показательной функции: y = a x , a > 0, a1:

Для представления числа в виде степени используют основное логарифмическое тождество: b = , a > 0, a1, b > 0.

Задачи и тесты по теме "Показательные уравнения"

  • Показательные уравнения

    Уроков: 4 Заданий: 21 Тестов: 1

  • Показательные уравнения - Важные темы для повторения ЕГЭ по математике

    Заданий: 14

  • Системы показательных и логарифмических уравнений - Показательная и логарифмическая функции 11 класс

    Уроков: 1 Заданий: 15 Тестов: 1

  • §2.1. Решение показательных уравнений

    Уроков: 1 Заданий: 27

  • §7 Показательные и логарифмические уравнения и неравенства - Раздел 5. Показательная и логарифмическая функции 10 класс

    Уроков: 1 Заданий: 17

Для успешного решения показательных уравнений Вы должны знать основные свойства степеней, свойства показательной функции, основное логарифмическое тождество.

При решении показательных уравнений используют два основных метода:

  1. переход от уравнения a f(x) = a g(x) к уравнению f(x) = g(x);
  2. введение новых прямых.

Примеры.

1. Уравнения, сводящиеся к простейшим. Решаются приведением обеих частей уравнения к степени с одинаковым основанием.

3 x = 9 x – 2 .

Решение:

3 x = (3 2) x – 2 ;
3 x = 3 2x – 4 ;
x = 2x –4;
x = 4.

Ответ: 4.

2. Уравнения, решаемые с помощью вынесения за скобки общего множителя.

Решение:

3 x – 3 x – 2 = 24
3 x – 2 (3 2 – 1) = 24
3 x – 2 × 8 = 24
3 x – 2 = 3
x – 2 = 1
x = 3.

Ответ: 3.

3. Уравнения, решаемые с помощью замены переменной.

Решение:

2 2x + 2 x – 12 = 0
Обозначаем 2 x = у.
y 2 + y – 12 = 0
y 1 = - 4; y 2 = 3.
a) 2 x = - 4.Уравнение не имеет решений, т.к. 2 х > 0.
б) 2 x = 3; 2 x = 2 log 2 3 ; x = log 2 3.

Ответ: log 2 3.

4. Уравнения, содержащие степени с двумя различными (не сводящимися друг к другу) основаниями.

3 × 2 х + 1 - 2 × 5 х – 2 = 5 х + 2 х – 2 .

3× 2 х + 1 – 2 х – 2 = 5 х – 2 × 5 х – 2
2 х – 2 ×23 = 5 х – 2
×23
2 х – 2 = 5 х – 2
(5/2) х– 2 = 1
х – 2 = 0
х = 2.

Ответ: 2.

5. Уравнения, однородные относительно a x и b x .

Общий вид: .

9 x + 4 x = 2,5 × 6 x .

Решение:

3 2x – 2,5 × 2 x × 3 x +2 2x = 0 |: 2 2x > 0
(3/2) 2x – 2,5 × (3/2) x + 1 = 0.
Обозначим (3/2) x = y.
y 2 – 2,5y + 1 = 0,
y 1 = 2; y 2 = ½.

Ответ: log 3/2 2; - log 3/2 2.

1º. Показательными уравнениями называют уравнения, содержащие переменную в показателе степени.

Решение показательных уравнений основано на свойстве степени: две степени с одним и тем же основание равны тогда и только тогда, когда равны их показатели.

2º. Основные способы решения показательных уравнений :

1) простейшее уравнение имеет решение ;

2) уравнение вида логарифмированием по основанию a сводят к виду ;

3) уравнение вида равносильно уравнению ;

4) уравнение вида равносильно уравнению .

5) уравнение вида через замену сводят к уравнению , а затем решают совокупность простейших показательных уравнений ;

6) уравнение со взаимно обратными величинами заменой сводят к уравнению , а затем решают совокупность уравнений ;

7) уравнения, однородные относительно a g (x) и b g (x) при условии вида через замену сводят к уравнению , а затем решают совокупность уравнений .

Классификация показательных уравнений.

1. Уравнения, решаемые переходом к одному основанию .

Пример 18. Решить уравнение .

Решение: Воспользуемся тем, что все основания степеней являются степенями числа 5: .

2. Уравнения, решаемые переходом к одному показателю степени .

Эти уравнения решаются преобразованием исходного уравнения к виду , которое использованием свойства пропорции приводится к простейшему.

Пример 19. Решить уравнение:

3. Уравнения, решаемые вынесением общего множителя за скобки .

Если в уравнении каждый показатель степени отличается от другого на некоторое число, то уравнения решаются вынесением за скобки степени с наименьшим показателем.

Пример 20. Решить уравнение .

Решение: Вынесем в левой части уравнения степень с наименьшим показателем за скобки:



Пример 21. Решить уравнение

Решение: Сгруппируем отдельно в левой части уравнения слагаемые, содержащие степени с основанием 4, в правой части – с основанием 3, затем вынесем степени с наименьшим показателем за скобки:

4. Уравнения, сводящиеся к квадратным (или кубическим) уравнениям .

К квадратному уравнению относительно новой переменной y сводятся уравнения:

а) вида подстановкой , при этом ;

б) вида подстановкой , при этом .

Пример 22. Решить уравнение .

Решение: Сделаем замену переменной и решим квадратное уравнение:

.

Ответ: 0; 1.

5. Однородные относительно показательных функций уравнения.

Уравнение вида является однородным уравнением второй степени относительно неизвестных a x и b x . Такие уравнения сводятся предварительным делением обеих частей на и последующей подстановкой к квадратным уравнениям.

Пример 23. Решить уравнение .

Решение: Разделим обе части уравнения на :

Положив , получим квадратное уравнение с корнями .

Теперь задача сводится к решению совокупности уравнений . Из первого уравнения находим, что . Второе уравнение не имеет корней, так как при любых значения x .

Ответ: -1/2.

6. Рациональные относительно показательных функций уравнения .

Пример 24. Решить уравнение .

Решение: Разделим числитель и знаменатель дроби на 3 x и получим вместо двух – одну показательную функцию:

7. Уравнения вида .

Такие уравнения с множеством допустимых значений (ОДЗ), определяемым условием , логарифмированием обеих частей уравнения приводятся к равносильному уравнению , которые в свою очередь равносильны совокупности двух уравнений или .

Пример 25. Решить уравнение: .

.

Дидактический материал.

Решите уравнения:

1. ; 2. ; 3. ;

4. ; 5. ; 6. ;

9. ; 10. ; 11. ;

14. ; 15. ;

16. ; 17. ;

18. ; 19. ;

20. ; 21. ;

22. ; 23. ;

24. ; 25. .

26. Найдите произведение корней уравнения .

27. Найдите сумму корней уравнения .

Найдите значение выражения:

28. , где x 0 – корень уравнения ;

29. , где x 0 целый корень уравнения .

Решите уравнение:

31. ; 32. .

Ответы: 1. 0; 2. -2/9; 3. 1/36; 4. 0, 0.5; 5. 0; 6. 0; 7. -2; 8. 2; 9. 1, 3; 10. 8; 11. 5; 12. 1; 13. ¼; 14. 2; 15. -2, -1; 16. -2, 1; 17. 0; 18. 1; 19. 0; 20. -1, 0; 21. -2, 2; 22. -2, 2; 23. 4; 24. -1, 2; 25. -2, -1, 3; 26. -0.3; 27. 3; 28. 11; 29. 54; 30. -1, 0, 2, 3; 31. ; 32. .

Тема №8.

Показательные неравенства.

1º. Неравенство, содержащее переменную в показателе степени, называется показательным неравенством.

2º. Решение показательных неравенств вида основано на следующих утверждениях:

если , то неравенство равносильно ;

если , то неравенство равносильно .

При решении показательных неравенств используют те же приемы, что и при решении показательных уравнений.

Пример 26. Решить неравенство (методом перехода к одному основанию ).

Решение: Так как , то заданное неравенство можно записать в виде: . Так как , то данное неравенство равносильно неравенству .

Решив последнее неравенство, получим .

Пример 27. Решить неравенство: (методом вынесения общего множителя за скобки ).

Решение: Вынесем за скобки в левой части неравенства , в правой части неравенства и разделим обе части неравенства на (-2), поменяв знак неравенства на противоположный:

Так как , то при переходе к неравенству показателей знак неравенства опять меняется на противоположный. Получаем . Таким образом, множество всех решений данного неравенства есть интервал .

Пример 28. Решить неравенство (методом введения новой переменной ).

Решение: Пусть . Тогда данное неравенство примет вид: или , решением которого является интервал .

Отсюда . Поскольку функция возрастает, то .

Дидактический материал.

Укажите множество решений неравенства:

1. ; 2. ; 3. ;

6. При каких значениях x точки графика функции лежат ниже прямой ?

7. При каких значениях x точки графика функции лежат не ниже прямой ?

Решите неравенство:

8. ; 9. ; 10. ;

13. Укажите наибольшее целое решение неравенства .

14. Найдите произведение наибольшего целого и наименьшего целого решений неравенства .

Решите неравенство:

15. ; 16. ; 17. ;

18. ; 19. ; 20. ;

21. ; 22. ; 23. ;

24. ; 25. ; 26. .

Найдите область определения функции:

27. ; 28. .

29. Найдите множество значений аргумента, при которых значения каждой из функций больше 3:

и .

Ответы: 11. 3; 12. 3; 13. -3; 14. 1; 15. (0; 0,5); 16. ; 17. (-1; 0)U(3; 4); 18. [-2; 2]; 19. (0; +∞); 20. (0; 1); 21. (3; +∞); 22. (-∞; 0)U(0,5; +∞); 23. (0; 1); 24. (-1; 1); 25. (0; 2]; 26. (3; 3,5)U (4; +∞); 27. (-∞; 3)U{5}; 28. }