Квадратный трехчлен и его корни. Урок «Квадратный трехчлен и его корни

Презентация к уроку математики в 9 классе по теме "Квадратный трехчлен и его корни" с содержанием заданий углубленного уровня изучения предмета. Презентация расчитана на продолжительное использование в течение всего урока. Задания разного рода по содержанию.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Пункт плана Пункт плана Пункт плана Пункт плана Пункт плана Актуализация знаний Изучение темы урока Энциклопедическая справка Динамическая минутка Домашнее задание Квадратный трехчлен и его корни подготовила учитель математики: 1КК Радченко Наталья Федоровна

Актуализация знаний Изучение темы урока Энциклопедическая справка Динамическая минута Домашнее задание Актуализация знаний ◊ 1 Повторение материала о функциях; ◊ 2 Теоретические основы решения квадратного уравнения; ◊ 3 Теорема Виета; ◊ 4 Итог.

Актуализация знаний Повторение материала: среди данных функций укажите линейные убывающие функции: y= x²+12 y= -x-24 y= 9x+8 h= 23-23x h= 1/x² g= (x+16)² g= -3

Актуализация знаний Чем определяется наличие и количество корней квадратного уравнения? Как вычислить дискриминант квадратного уравнения D = 2. Назовите формулы корней квадратного уравнения D>0 , то х 1,2 = D = 0 , то х =

Актуализация знаний t² - 2t – 3 = 0 3. Вычислите дискриминант и ответьте на вопрос «Сколько корней имеет квадратное уравнение»? D= 16 >0 , два корня Чему равно произведение корней? Х 1  х 2 = - 3 5. Чему равна сумма корней уравнения? Х 1 + х 2 = 2 6. Что можно сказать о знаках корней? Корни разных знаков 7. Найдите корни подбором. Х 1 = 3, х 2 = -1

Изучение темы урока ◊ 1 Сообщение темы урока; ◊ 2 Теоретические основы понятия «Квадратный трехчлен и его корни»; ◊ 3 Высказывания великих мыслителей о математике; ◊ 4 Разбор примеров тематики; Изучение темы урока Энциклопедическая справка Динамическая минута Домашнее задание

Квадратный трехчлен и его корни Квадратным трехчленом называется многочлен вида ax² + bx + c , где x- переменная, a, b и c - некоторые числа, причем, a≠ 0 . Корнем квадратного трехчлена называется значение переменной, при котором значение этого трехчлена равно нулю Чтобы найти корни квадратного трехчлена ax² + bx + c , необходимо решить квадратное уравнение ax² + bx + c =0

Квадратный трехчлен и его корни Мало иметь хороший ум, главное – хорошо его применять. Р.Декарт Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э. Кольман

Энциклопедическая справка ◊ 1 Понятие «параметр»; ◊ 2 Значение слова «параметр» словарях русского языка и словаре иностранных слов; ◊ 3 Обозначение и широта применения параметра; ◊ 4 Примеры с параметрами. Энциклопедическая справка Динамическая минута Домашнее задание

Энциклопедическая справка ПАРАМЕТР (от греч. παραμετρέω - меряю, c опоставляя). Величина, входящая в математическую формулу и сохраняющая постоянное значение в пределах одного явления или для данной частной задачи…, (мат.) Параметр – постоянная величина, выраженная буквой, сохраняющая свое постоянное значение лишь в условиях данной задачи… «Словарь иностранных слов». 3. При каком значении параметра m квадратный трехчлен 2х ² + 2тх – т – 0,5 имеет единственный корень? Найдите этот корень.

Динамическая пауза ◊ 1 Решение «проблемной задачи»; ◊ 2 Историческая справка: письмо из прошлого; Динамическая минутка Домашнее задание

Динамическая пауза При каком значении параметра т квадратный трехчлен 2х ² + 2тх – т – 0,5 = 0 и меет единственный корень? Найдите этот корень. Квадратное уравнение имеет один корень D=0 D= b² - 4ac; a=2, b=2m, c= - m – 0,5 D= (2m)² - 4  2  (- m – 0,5) = 4m² + 8m +4 D=0, 4m² + 8m +4 = 0 m² + 2m +1 = 0 (m + 1)² = 0 m= - 1 Подставим найденное значение m в исходное уравнение: 2х ² - 2х + 1 – 0,5 = 0 4х ² - 4х + 1 = 0 (2х – 1) ² =0 2х -1 =0 х = 0,5

Динамическая пауза В домашнем задании ученикам 8 класса было предложено найти корни квадратного трехчлена (х ² - 5х +7) ² - 2(х ² - 5х +7) - 3 Подумав, Витя рассудил так: сначала нужно раскрыть скобки, потом привести подобные слагаемые. Но Степа сказал, что есть более простой способ решения и раскрывать скобки вовсе необязательно. Помогите Вите найти рациональный путь решения

Динамическая пауза Задачи на нахождение корней квадратного трехчлена и составление квадратных уравнений встречаются уже в древнеегипетских математических папирусах. Общее правило нахождения корней и решения уравнений вида: ax ² + bx = c, где a > 0, b и c – любые, сформулировал Брахмагупта (VII в. н. э.). Брахмагупта еще не знал, что квадратное уравнение может иметь и отрицательный корень. Бхаскара Ачарья (XII в.) сформулировал, соотношения между коэффициентами уравнения. Составил много задач.

Обобщение, домашнее задание ◊ 1 Решение упражнений с параметром: различные типы заданий; ◊ 2 Итог по изучаемой теме; ◊ 3 Домашнее задание: по уровням. Домашнее задание

Обобщение, домашнее задание Найдите корни квадратного трехчлена (x-4)² +(4y-12)² . Найдите значения параметра a , при каждом из которых квадратный трехчлен x²+ 4 x + 2ax+8a+1 имеет одно решение. Задание на дом: п.3; 1 группа: №45 (в, г), №49(в, г); 2 группа: a) найдите значение параметра а, при котором квадратный трехчлен x²-6x+2ax+4a не имеет решения; b) найдите корни квадратного трехчлена (2x-6)²+(3y-12)²

источник шаблона Чернакова Наталия Владимировна Преподаватель химии и биологии ГОУ НПО Архангельской области «Профессиональное училище №31» «http://pedsovet.su/»


Найти корень квадратного трехчлена можно через дискриминант. Кроме того, для приведенного многочлена второй степени действует теорема Виета, основанная на соотношении коэффициентов.

Инструкция

  • Квадратные уравнения – довольно обширная тема в школьной алгебре. Левая часть такого уравнения представляет собой многочлен второй степени вида А х² + B х + C, т.е. выражение из трех одночленов разной степени неизвестной х. Чтобы найти корень квадратного трехчлена, нужно вычислить такое значение х, при котором выполняется равенство этого выражения нулю.
  • Для решения квадратного уравнения нужно найти дискриминант. Его формула является следствием выделения полного квадрата многочлена и представляет собой определенное соотношение его коэффициентов:D = B² – 4 А C.
  • Дискриминант может принимать различные значения, в том числе быть отрицательным. И если младшие школьники могут с облегчением сказать, что корней у такого уравнения нет, то старшеклассники уже способны их определить, исходя из теории комплексных чисел. Итак, вариантов может быть три: Дискриминант – положительное число. Тогда корни уравнения равны: х1 = (-B + √D)/2 А; х2 = (-B - √D)/2 А;
    Дискриминант обратился в ноль. Теоретически в этом случае уравнение также имеет два корня, но практически они одинаковы: х1 = х2 = -B/2 А;
    Дискриминант меньше нуля. В расчет вводится некая величина i² = -1, которая позволяет записать комплексное решение: х1 = (-B + i √|D|)/2 А; х2 = (-B - i √|D|)/2 А.
  • Метод дискриминанта справедлив для любого квадратного уравнения, однако есть ситуации, когда целесообразно применить более быстрый способ, особенно при небольших целочисленных коэффициентах. Этот способ называется теоремой Виета и заключается в паре соотношений между коэффициентами в приведенном трехчлене:х² + P х + Q
    х1 + х2 = -P;
    х1 х2 = Q.Остается только подобрать корни.
  • Следует отметить, что уравнение может быть приведено к подобному виду. Для этого нужно разделить все слагаемые трехчлена на коэффициент при старшей степени А:А х² + B х + C |А
    х² + B/А х + C/А
    х1 + х2 = -B/А;
    х1 х2 = C/А.

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8);
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Дано: 5x²+3x+7

Сначала вычислим дискриминант, как в предыдущих случаях.

D=9-4*5*7=9-140= -131.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Дано: x²+3x-10

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

К примеру, перемножение следующих чисел дает -10:

  • -1, 10;
  • -10, 1;
  • -5, 2;
  • -2, 5.
  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

  • -1, -3;
  • -3, -1;
  • 3, 1;
  • 1, 3.

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

Нахождение корней квадратного трехчлена

Цели: ввести понятие квадратичного трехчлена и его корней; формировать умение находить корни квадратного трехчлена.

Ход урока

I. Организационный момент.

II. Устная работа.

Какие из чисел: –2; –1; 1; 2 – являются корнями уравнений?

а) 8х + 16 = 0; в) х 2 + 3х – 4 = 0;

б) 5х 2 – 5 = 0; г) х 3 – 3х – 2 = 0.

III. Объяснение нового материала.

Объяснение нового материала проводить по следующей с х е м е:

1) Ввести понятие корня многочлена.

2) Ввести понятие квадратного трехчлена и его корней.

3) Разобрать вопрос о возможном количестве корней квадратного трехчлена.

Вопрос о выделении квадрата двучлена из квадратного трехчлена лучше разобрать на следующем уроке.

На каждом этапе объяснения нового материала необходимо предлагать учащимся устное задание на проверку усвоения основных моментов теории.

З а д а н и е 1. Какие из чисел: –1; 1; ; 0 – являются корнями многочлена х 4 + 2х 2 – 3?

З а д а н и е 2. Какие из следующих многочленов являются квадратными трехчленами?

1) 2х 2 + 5х – 1; 6) х 2 – х – ;

2) 2х – ; 7) 3 – 4х + х 2 ;

3) 4х 2 + 2х + х 3 ; 8) х + 4х 2 ;

4) 3х 2 – ; 9) + 3х – 6;

5) 5х 2 – 3х ; 10) 7х 2 .

Какие из квадратных трёхчленов имеют корень 0?

З а д а н и е 3. Может ли квадратный трехчлен иметь три корня? Почему? Сколько корней имеет квадратный трехчлен х 2 + х – 5?

IV. Формирование умений и навыков.

Упражнения:

1. № 55, № 56, № 58.

2. № 59 (а, в, д), № 60 (а, в).

В этом задании не нужно искать корни квадратных трехчленов. Достаточно найти их дискриминант и ответить на поставленный вопрос.

а) 5х 2 – 8х + 3 = 0;

D 1 = 16 – 15 = 1;

D 1 0, значит, данный квадратный трехчлен имеет два корня.

б) 9х 2 + 6х + 1 = 0;

D 1 = 9 – 9 = 0;

D 1 = 0, значит, квадратный трехчлен имеет один корень.

в) –7х 2 + 6х – 2 = 0;

7х 2 – 6х + 2 = 0;

D 1 = 9 – 14 = –5;

Если останется время, можно выполнить № 63.

Р е ш е н и е

Пусть ax 2 + bx + c – данный квадратный трехчлен. Поскольку a + b +
+ c = 0, то один из корней этого трехчлена равен 1. По теореме Виета второй корень равен . Согласно условию, с = 4а , поэтому второй корень данного квадратного трехчлена равен
.

О т в е т: 1 и 4.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Что такое корень многочлена?

– Какой многочлен называют квадратным трехчленом?

– Как найти корни квадратного трехчлена?

– Что такое дискриминант квадратного трехчлена?

– Сколько корней может иметь квадратный трехчлен? От чего это зависит?

Домашнее задание: № 57, № 59 (б, г, е), № 60 (б, г), № 62.

Тема «Квадратный трехчлен и его корни» изучается в курсе алгебры 9 класса. как и любой другой урок математики, урок по этой теме требует иособых средств и методов обучения. Необходима наглядность. К таковой можно отнести данный видеоурок, который разработан специально для того, чтобы облегчить труд учителя.

Данный урок длится 6:36 минут. За это время автор успевает раскрыть тему полностью. Учителю останется только подобрать задания по теме, чтобы закрепить материал.

Урок начинается с демонстрации примеров многочленов с одной переменной. Затем на экране появляется определение корня многочлена. Это определение подкрепляется примером, где необходимо найти корни многочлена. Решив уравнение, автор получает корни многочлена.

Далее следует замечание, что к квадратным трехчленам относятся и такие многочлены второй степени, у которых второй, третий или оба коэффициента, кроме старшего, равны нулю. Эта информация подкрепляется примером, где свободный коэффициент равен нулю.

Затем автор поясняет, как найти корни квадратного трехчлена. Для этого необходимо решить квадратное уравнение. И проверить это автор предлагает на примере, где дан квадратный трехчлен. Нужно найти его корни. Решение строится на основе решения квадратного уравнения, полученного из данного квадратного трехчлена. Решение расписано на экране подробно, четко и понятно. По ходу решения данного примера автор вспоминает, как решается квадратное уравнение, записывает формулы, и получает результат. На экране записывается ответ.

Нахождение корней квадратного трехчлена автор объяснил на основе примера. Когда обучающиеся поймут суть, то можно переходить к более общим моментам, что автор и делает. Поэтому он далее обобщает все вышесказанное. Общими словами на математическом языке автор записывает правило нахождения корней квадратного трехчлена.

Далее следует замечание, что в некоторых задачах удобнее квадратный трехчлен записывать немного иначе. На экране дается эта запись. То есть получается, что из квадратного трехчлена можно выделить квадрат двучлена. Такое преобразование предлагается рассмотреть на примере. Решение данного примера приводится на экране. Как и в прошлом примере, решение строится подробно со всеми необходимыми пояснениями. Затем автор рассматривает задачу, где используется только что выданная информация. Это геометрическая задача на доказательство. В решении присутствует иллюстрация в виде чертежа. Решение задачи расписано подробно и понятно.

На этом урок завершается. Но учитель может подобрать по способностям обучающихся задания, которые будут соответствовать данной теме.

Данный видеоурок можно использовать в качестве объяснения нового материала на уроках алгебры. Он отлично подойдет для самостоятельной подготовки обучающихся к уроку.