Ракетное топливо: разновидности и состав. Топливо для жидкостных ракетных двигателей

«... И нет ничего нового под солнцем»
(Экклизиаст 1:9).
О топливах, ракетах, ракетных двигателях писалось, пишут и будут писать.


Одной из первых работ по топливам ЖРД можно считать книгу В.П. Глушко "Жидкое топливо для реактивных двигателей", изданную в 1936 г.

Для меня тема показалась интересной, связанной с моей бывшей специальностью и учёбой в ВУЗе, тем паче "приволок" её мой младший отпрыск: "Шеф давай замесим, что нить такое и запустим, а если лень, то мы сами "сообразим". Видимо, не дают покоя.

Так хочется правильно взорвать свой ракетный двигатель.


"Соображать" будем вместе, под строгим родительским контролем. Руки ноги должны быть целыми, чужие тем более.

Важный параметр - коэффициент избытка окислителя (обозн. греческой "α" с индексом "ок.") и массовое соотношение компонентов Kм.

Kм=(dmок./dt)/(dmг../dt), т.е. отношение массового расхода окислителя к массовому расходу горючего. Он специфичен для каждого топлива. В идеальном случае представляет собой стехиометрическое соотношение окислителя и горючего, т.е. показывает сколько кг окислителя нужно для окисления 1 кг горючего. Однако реальные значения отличаются от идеальных. Соотношение реального Kм к идеальному и есть коэффициент избытка окислителя.

Как правило, αок.<=1. И вот почему. Зависимости Tk(αок.) и Iуд.(αок.) нелинейны и для многих топлив последняя имеет максимум при αок. не при стехиометрическом соотношении компонентов, т.е макс. значения Iуд. получаются при некотором снижении количества окислителя по отношению к стехиометрическому. Ещё немного терпения, т.к. не могу обойти понятие: . Это пригодится и в статье, и в повседневной жизни.

Кратко энтальпия – это энергия. Для статьи важны две её "ипостаси":
Термодинамическая энтальпия - количество энергии, затраченной на образование вещества из исходных химических элементов. Для веществ, состоящих из одинаковых молекул (H 2 , O 2 и пр.), она равна нулю.
Энтальпия сгорания - имеет смысл только при условии протекания химической реакции. В справочниках можно найти экспериментально полученные при нормальных условиях значения этой величины. Чаще всего для горючих это полное окисление в среде кислорода, для окислителей – окисление водорода заданным окислителем. Причем значения могут быть как положительными, так и отрицательными в зависимости от вида реакции.

"Сумму термодинамической энтальпии и энтальпии сгорания называют полной энтальпией вещества. Собственно, этой величиной и оперируют при тепловом расчёте камер ЖРД."

Требования к ЖРТ:
-как к источнику энергии;
-как к веществу, которое приходится (на данном уровне развития технологий) использовать для охлаждения РД и ТНА, иногда к наддуву баков с РТ, предоставлять ему объём (баки РН) и т.д.;
-как к веществу вне ЖРД, т.е. при хранении, транспортировке, заправке, испытаниях, экологической безопасности и т.д.

Такая градация относительна условна, но в принципе отражает суть. Назову эти требования так: №1, №2, №3. Кто-то может дополнить список в комментариях.
Эти требования классический пример , которые "тянут" создателей РД в разные стороны:

# С точки зрения источника энергии ЖРД (№1)

Т.е. необходимо получить макс. Iуд. Не буду дальше забивать головы всем, в общем случае:

При прочих важных параметрах для №1 нас интересует R и Т (со всеми индексами).
Нужно, чтобы: молекулярная масса продуктов сгорания была минимальной, максимальным было удельное теплосодержание.

# С точки зрения конструктора РН (№2):

ТК должны иметь максимальную плотность, особенно на первых ступенях ракет, т.к. они самые объёмные и имеют мощнейшие РД, с большим секундным расходом. Очевидно, что это не согласуется с требованием под №1.

# С эксплуатационных задач важны (№3):

Химическая стабильность ТК;
-простота заправки, хранения, перевозки и изготовления;
-экологическая безопасность (во всём "поле" применения), а именно токсичность, себестоимость производства и транспортировки и т.д. и безопасность при работе РД (взрывоопасность).

Подробнее смотри "Сага о ракетных топливах-обратная сторона медали".


Надеюсь, ещё никто не уснул? У меня ощущение, что разговариваю сам с собой. Скоро будет про спирт, не отключайтесь!

Конечно, это лишь вершина айсберга. Ещё влезают сюда дополнительные требования, из-за которых следует искать КОНСЕНСУСЫ и КОМПРОМИСЫ. Один из компонентов обязательно должен иметь удовлетворительные (лучше отличные) свойства охладителя, т.к. на данном уровне технологий приходится охлаждать КС и сопло, а также защитить критическое сечение РД:

На фотографии сопло ЖРД XLR-99: отчётливо видна характерная особенность конструкции американских ЖРД 50-60 годов – трубчатая камера:

Также требуется (как правило) один из компонентов использовать как рабочее тело для турбины ТНА:

Для топливных компонентов "большое значение имеет давление насыщенных паров (это грубо говоря давление, при котором жидкость начинает кипеть при данной температуре). Этот параметр сильно влияет на разработку насосов и вес баков."/ С.С. Факас/

Важный фактор-агрессивность ТК к материалам (КМ) ЖРД и баков для их хранения.
Если ТК очень "вредные" (как некоторые люди), тогда инженерам приходится тратиться на ряд специальных мер по защите своих конструкций от топлива.

Классификация ЖРТ - чаще всего по давлению насыщенных паров или , а проще говоря - температуре кипения при нормальном давлении.

Высококипящие компоненты ЖРТ.

Такие ЖРД можно классифицировать как многотопливные.
ЖРД на трехкомпонентном топливе (фтор+водород+литий) разрабатывался в .

Двухкомпонентные топлива состоят из окислителя и горючего.
ЖРД Bristol Siddeley BSSt.1 Stentor: двухкомпонентный ЖРД (H2O2+керосин)

Окислители

Кислород

Химическая формула-О 2 (дикислород, американское обозначение Oxygen-OX).
В ЖРД применяется жидкий, а не газообразный кислород-Liquid oxygen (LOX-кратко и всё понятно).
Молекулярная масса (для молекулы)-32г/моль. Для любителей точности: атомная масса (молярная масса)=15,99903;
Плотность=1,141 г/см³
Температура кипения=90,188K (−182,96°C)

С точки зрения химии, идеальный окислитель. Он использовался в первых баллистических ракетах ФАУ, ее американских и советских копиях. Но его температура кипения не устраивала военных. Требуемый диапазон рабочих температур от –55°C до +55°C (большое время подготовки к старту, малое время нахождения на боевом дежурстве).

Очень низкая коррозионная активность. Производство давно освоено, стоимость небольшая: менее $0,1 (по-моему, дешевле литра молока в разы).
Недостатки:

Криогенный - необходимо захолаживание и постоянная дозаправка для компенсации потерь перед стартом. Еще и может нагадить другим ТК (керосину):

На фото: створки защитных устройств заправочного автостыка керосина (ЗУ-2), за 2 минуты до окончания циклограммы при выполнении операции ЗАКРЫТЬ ЗУ из-за обледенения не полностью закрылись . Одновременно из-за обледенения не прошел сигнал о съезде ТУА с пусковой установки. Пуск проведен на следующий день.

Агрегат-заправщик РБ жидким кислородом снят с колес и установлен на фундаменте.

Затруднено использование в качестве охладителя КС и сопла ЖРД.

"АНАЛИЗ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ КИСЛОРОДА В КАЧЕСТВЕ ОХЛАДИТЕЛЯ КАМЕРЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ" САМОШКИН В.М., ВАСЯНИНА П.Ю., Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева

Сейчас всеми изучается возможность использования переохлажденного кислорода либо кислорода в шугообразном состоянии, в виде смеси твердой и жидкой фаз этого компонента. Вид будет примерно такой же, как эта красивая ледяная шуга в бухточке правее Шаморы:


Пофантазируйте: вместо Н 2 О представьте ЖК (LOX).

Шугирование позволит увеличить общую плотность окислителя.

Пример захолаживания (переохлаждения) БР Р-9А: в качестве окислителя в ракете впервые было решено использовать переохлажденный жидкий кислород, что позволило уменьшить общее время подготовки ракеты к пуску и повысить степень ее боеготовности.

Примечание: почему-то за эту же самую процедуру нагибал (почти "чморил") Илона Маска известный писатель Дмитрий Конаныхин.
См:

Озон -O 3

Молекулярная масса=48 а.е.м., молярная масса=47,998 г/моль
Плотность жидкости при -188 °C (85,2 К) составляет 1,59(7) г/см³
Плотность твёрдого озона при −195,7 °С (77,4 К) равна 1,73(2) г/см³
Температура плавления −197,2(2) °С (75,9 К)

Давно инженеры мучились с ним, пытаясь использовать в качестве высокоэнергетического и вместе с тем экологически чистого окислителя в ракетной технике.

Общая химическая энергия, освобождающаяся при реакции сгорания с участием озона, больше, чем для простого кислорода, примерно на одну четверть (719 ккал/кг). Больше будет, соответственно, и Iуд. У жидкого озона большая плотность, чем у жидкого кислорода (1,35 против 1,14 г/см³ соответственно), а его Т кипения выше (−112 °C и −183 °C соответственно).

Пока непреодолимым препятствием является химическая неустойчивость и взрывоопасность жидкого озона с разложением его на O и O2, при котором возникает движущаяся со скоростью около 2 км/с детонационная волна и развивается разрушающее детонационное давление более 3·107 дин/см2 (3 МПа), что делает применение жидкого озона невозможным при нынешнем уровне техники, за исключением использования устойчивых кислород-озоновых смесей (до 24 % озона). Преимуществом подобной смеси также является больший удельный импульс для водородных двигателей, по сравнению с озон-водородными. На сегодняшний день такие высокоэффективные двигатели, как РД-170, РД-180, РД-191, а также разгонные вакуумные двигатели вышли по Iуд на близкие к предельным значениям параметры и для повышения УИ осталось лишь одна возможность, связанная с переходом на новые виды топлива.

Азотная кислота -HNO 3

Состояние - жидкость при н.у.
Молярная масса 63.012 г/моль (не важно, что я использую или молекулярную массу-это не меняет сути)
Плотность=1,513 г/см³
Т. плав.=-41,59 °C,Т. кип.=82,6 °C

HNO3 имеет высокую плотность, невысокую стоимость, производится в больших количествах, достаточно стабильна, в том числе при высоких температурах, пожаро- и взрывобезопасная. Главное ее преимущество перед жидким кислородом в высокой температуре кипения, а, следовательно, в возможности неограниченно долго храниться без всякой теплоизоляции. Молекула азотной кислоты HNO 3 – почти идеальный окислитель. Она содержит в качестве “балласта” атом азота и “половинку” молекулы воды, а два с половиной атома кислорода можно использовать для окисления топлива. Но не тут-то было! Азотная кислота настолько агрессивное вещество, что непрерывно реагирует само с собой–атомы водорода отщепляются от одной молекулы кислоты и присоединяются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Даже самые стойкие сорта нержавеющей стали медленно разрушаются концентрированной азотной кислотой (в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов). Для уменьшения коррозионной активности в азотную кислоту стали добавлять различные вещества, всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз.

Для повышения уд.импульса в кислоту добавляют двуокись азота (NO 2). Добавка диоксида азота в кислоту связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты, увеличивается плотность раствора, достигая максимума при 14% растворенного NO 2 . Эту концентрацию использовали американцы для своих боевых ракет.

Мы почти 20 лет искали подходящую тару для азотной кислоты. Очень трудно при этом подобрать конструкционные материалы для баков, труб, камер сгорания ЖРД.

Вариант окислителя, что выбрали в США, с 14 % двуокиси азота. А наши ракетчики поступили иначе. Надо было догонять США любой ценой, поэтому окислители советских марок – АК-20 и АК-27 – содержали 20 и 27 % тетраоксида.

Интересный факт: в первом советском ракетном истребителе БИ-1 были использованы для полетов азотная кислота и керосин.

Баки и трубы пришлось изготовлять из монель-металла: сплава никеля и меди, он стал очень популярным конструкционным материалом у ракетчиков. Советские рубли были почти на 95 % сделаны из этого сплава.

Недостатки: терпимая "гадость". Коррозионною активна. Удельный импульс недостаточно высок. В настоящее время в чистом виде почти не используется.

Азотный тетраоксид -АТ (N 2 O 4)

Молярная масса=92,011 г/моль
Плотность=1,443 г/см³


"Принял эстафету" от азотной кислоты в военных двигателях. Обладает саомовоспламеняемостью с гидразином, НДМГ. Низкокипящий компонент, но может долго хранится при принятии особых мер.

Недостатки: такая же гадость, как и HNO 3 , но со своими причудами. Может разлагаться на окись азота. Токсичен. Низкий удельный импульс. Часто использовали и используют окислитель АК-NN. Это смесь азотной кислоты и азотного тетраоксида, иногда её называют "красной дымящейся азотной кислотой". Цифры обозначают процентное кол-во N 2 O 4 .

В основном эти окислители используются в ЖРД военного назначения и ЖРД КА благодаря своим свойствам: долгохранимость и самовоспламеняемость. Характерные горючие для АТ это НДМГ и гидразин.

Фтор -F 2

Атомная масса=18,998403163 а. е. м. (г/моль)
Молярная масса F2, 37,997 г/моль
Температура плавления=53,53 К (−219,70 °C)
Температура кипения=85,03 К (−188,12 °C)
Плотность (для жидкой фазы), ρ=1,5127 г/см³

Химия фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 годов и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "Фтор" (от греч. phthoros - разрушение, гибель), предложенное А. Ампером в 1810 году, употребляется только в русском языке; во многих странах принято название "флюор" . Это прекрасный окислитель с точки зрения химии. Окисляет и кислород, и воду, и вообще практически всё. Расчеты показывают, что максимальный теоретический Iуд можно получить на паре F2-Be (бериллий)-порядка 6000 м/с!

Супер? Облом, а не "супер"...

Врагу такой окислитель не пожелаешь.
Чрезвычайно коррозионною активен, токсичен, склонен к взрывам при контакте с окисляющимися материалами. Криогенен. Любой продукт сгорания также имеет почти те же "грехи": жутко коррозионны и токсичны.

Техника безопасности. Фтор токсичен, предельно допустимая концентрация его в воздухе примерно 2·10-4 мг/л, а предельно допустимая концентрация при экспозиции не более 1 ч составляет 1,5·10-3мг/л.

ЖРД 8Д21 применение пары фтор + аммиак давало удельный импульс на уровне 4000 м/с.
Для пары F 2 +H 2 получается Iуд=4020 м/с!
Беда: HF-фтороводород на "выхлопе".

Стартовая позиция после запуска такого "энергичного движка"?
Лужа жидких металлов и прочих растворённых в плавиковой кислоте химических и органических объектов!
Н 2 +2F=2HF, при комнатной температуре существует в виде димера H 2 F 2 .

Смешивается с водой в любом отношении с образованием фтороводородной (плавиковой) кислоты. А использованию его в ЖРД КА не реально из-за убийственной сложности хранения и разрушительного действия продуктов сгорания.

Всё то же самое относится и к остальным жидким галогенам, например, к хлору.

Фтороводородный ЖРД тягой 25 т для оснащения обеих ступеней ракетного ускорителя предполагалось разработать в В.П. Глушко на базе отработанного ЖРД тягой 10 т на фтороаммиачном (F 2 +NH 3) топливе.

Перекись водорода -H 2 O 2 .

Она упомянута мною выше в однокомпонентных топливах.

Walter HWK 109-507: преимущества в простоте конструкции ЖРД. Яркий пример такого топлива - перекись водорода.

Alles: список более-менее реальных окислителей закончен. Акцентирую внимание на HClО 4 . Как самостоятельные окислители на основе хлорной кислоты представляют интерес только: моногидрат (Н 2 О+ClО 4)-твёрдое кристаллическое вещество и дигидрат (2НО+НСlО 4)-плотная вязкая жидкость. Хлорная кислота (которая из-за Iуд сама по себе бесперспективна), при этом представляет интерес в качестве добавки к окислителям, гарантирующей надёжность самовоспламенения топлива.

Окислители можно классифицировать и так:

Итоговый (чаще используемый) список окислителей в связке с реальными же горючими:

Примечание: если хотите перевести один вариант удельного импульса в другой, то можно пользоваться простой формулой: 1 м/с = 9,81 с.
В отличие от них - горючих у нас .

Горючие

Основные характеристики двухкомпонентных ЖРТ при pк/pа=7/0,1 МПа

По физико-химическому составу их можно разбить на несколько групп:

Углеводородные горючие.
Низкомолекулярные углеводороды.
Простые вещества: атомарные и молекулярные.

Для этой темы пока практический интерес представляет лишь водород (Hydrogenium).
Na, Mg, Al, Bi, He, Ar, N 2 , Br 2 , Si, Cl 2 , I 2 и др. я не буду рассматривать в этой статье.
Гидразиновые топлива ("вонючки").

Просыпайтесь сони - мы добрались уже до спирта(С2Н5ОН).

Поиски оптимального горючего начались с освоения энтузиастами ЖРД. Первым широко использовавшимся горючим стал спирт (этиловый) , применявшийся на первых
советских ракетах Р-1, Р-2, Р-5 ("наследство" ФАУ-2) и на самой Vergeltungswaffe-2.

Вернее раствор 75% этилового спирта (этанол, этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») - одноатомный спирт с формулой C 2 H 5 OH (эмпирическая формула C 2 H 6 O), другой вариант: CH 3 -CH 2 -OH
У этого горючего два серьёзных недостатка , которые очевидно не устраивали военных: низкие энергетические показатели и .

Сторонники здорового образа жизни (спиртофобы) пытались решить вторую проблему с помощью фурфурилового спирта. Это ядовитая, подвижная, прозрачная, иногда желтоватая (до темно-коричневого), со временем краснеющая на воздухе жидкость. ВАРВАРЫ!

Хим. формула:C 4 H 3 OCH 2 OH, Рац. формула:C 5 H 6 O 2 . Отвратительная жижа.К питью не годна.

Группа углеводородов.

Керосин

Условная формула C 7,2107 H 13,2936
Горючая смесь жидких углеводородов (от C 8 до C 15) с температурой кипения в интервале 150-250 °C, прозрачная, бесцветная (или слегка желтоватая), слегка маслянистая на ощупь
плотность - от 0,78 до 0,85 г/см³ (при температуре 20°С);
вязкость - от 1,2 – 4,5 мм²/с (при температуре 20°С);
температура вспышки - от 28°С до 72°С;
теплота сгорания - 43 Мдж/кг.

Моё мнение: о точной молярной массе писать бессмысленно

Керосин является смесью из различных углеводородов, поэтому появляются страшные дроби (в хим. формуле) и "размазанная" температура кипения. Удобное высококипящее горючее. Используется давно и успешно во всём мире в двигателях и в авиации. Именно на нем до сих пор летают "Союзы". Малотоксичен (пить настоятельно не рекомендую), стабилен. Всё же керосин опасен и вреден для здоровья (употребление внутрь).
Минздрав категорически против!
Солдатские байки: хорошо помогает избавиться от противных .

Однако и он требует осторожности в обращении при эксплуатации:

Существенные плюсы: сравнительно недорог, освоен в производстве. Пара керосин-кислород идеальна для первой ступени. Ее удельный импульс на земле 3283 м/с, пустотный 3475 м/с. Недостатки. Относительно малая плотность.

Американские ракетные керосины Rocket Propellant-1 или Refined Petroleum-1


Относительно был .
Для повышения плотности лидерами освоения космоса были разработаны синтин (СССР) и RJ-5 (США).
.

Керосин имеет склонность к отложению смолистых осадков в магистралях и тракте охлаждения, что отрицательно сказывается на охлаждении. На это его нехорошее свойство педалируют .
Керосиновые двигатели наиболее освоены в СССР.

Шедевр человеческого разума и инженерии наша "жемчужина" РД-170/171:

Теперь более корректным названием для горючих на основе керосина стал термин -"углеводородное горючее", т.к. от керосина, который жгли в безопасных керосиновых лампах И. Лукасевича и Я. Зеха, применяемое УВГ "ушло" очень .

На самом деле "Роскосмос" дезу выдаёт:

После того, как в ее баки закачают компоненты топлива - нафтил (ракетный керосин ), сжиженный кислород и пероксид водорода, космическая транспортная система будет весить более 300 тонн (в зависимости от модификации РН.

Низкомолекулярные углеводороды

Метан -CH4


Молярная масса: 16,04 г/моль
Плотность газ (0 °C) 0,7168 кг/м³;
жидкость (−164,6 °C) 415 кг/м³
Т. плав.=-182,49 °C
Т. кип.=-161,58 °C

Всеми сейчас рассматривается как перспективное и дешёвое топливо, как альтернатива керосину и водороду.
Главный конструктор Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Недорог, распространен, устойчив, малотоксичен. По сравнению с водородом имеет более высокую температуру кипения, а удельный импульс в паре с кислородом выше, чем у керосина: около 3250-3300 м/с на земле. Неплохой охладитель.

Недостатки. Низкая плотность (вдвое ниже чем у керосина). При некоторых режимах горения может разлагаться с выделением углерода в твердой фазе, что может привести к падению импульса из-за двухфазности течения и резкому ухудшению режима охлаждения в камере из-за отложения сажи на стенках КС. В последнее время идут активные НОР и НИОКР в области его применения (наряду с пропаном и природным газом) даже в направлении модификации уже сущ. ЖРД (в частности такие работы были проведены над ).


«Роскосмос» уже в 2016 году приступил к разработке силовой установки на сжиженном природном газе.

Или "Kinder Surpeis", как пример: американский Raptor engine от Space X:

К этим топливам можно отнести пропан и природный газ. Основные их характеристики, как горючих, близки (за исключением большей плотности и более высокой температуры кипения) к УВГ. И имеются такие же проблемы при их использовании.

Особняком среди горючих позиционируется -H 2 (Жидкий: LH 2).


Молярная масса водорода равна 2 016 г / моль или приближенно 2 г / моль.
Плотность (при н. у.)=0,0000899 (при 273 K (0 °C)) г/см³
Температура плавления=14,01K (-259,14 °C);
Температура кипения=20,28K (-252,87 °C);


Использование пары LOX-LH 2 предложено еще Циолковским, но реализовано другими:

С точки зрения термодинамики Н 2 идеальное рабочее тело как для самого ЖРД, так и для турбины ТНА. Отличный охладитель, при чем как в жидком, так и в газообразном состоянии. Последний факт позволяет не особо бояться кипения водорода в тракте охлаждения и использовать газифицированный таким образом водород для привода ТНА.

Такая схема реализована в Aerojet Rocketdyne RL-10-просто шикарный (с инженерной точки зрения) движок:

Наш аналог (даже лучше , т.к. моложе): РД-0146 (Д, ДМ) - безгазогенераторный жидкостный ракетный двигатель, разработанный Конструкторским бюро химавтоматики в Воронеже.

Особенно эффективен с сопловым насадком из материала «Граурис». Но пока не летает

Этот ТК обеспечивает высокий удельный импульс-в паре с кислородом 3835 м/с.

Из реально используемых это самый высокий показатель. Эти факторы обуславливают пристальный интерес к этому горючему. Экологически чист, на "выходе" в контакте с О 2: вода (водяной пар). Распространен, практически неограниченные запасы. Освоен в производстве. Нетоксичен. Однако есть очень много ложек дегтя в этой бочке мёда.

1. Чрезвычайно низкая плотность. Все видели огромные водородные баки РН "Энергия" и МТКК "Шаттл". Из-за низкой плотности применим (как правило) на верхних ступенях РН.

Кроме того, низкая плотность ставит непростую задачу для насосов: насосы водорода многоступенчатые для того что бы обеспечить нужный массовый расход и при этом не кавитировать.

По этой же причине приходится ставить т.н. бустерные насосные агрегаты горючего (БНАГ) сразу за заборным устройством в баках, дабы облегчить жизнь основному ТНА.

Ещё насосы водорода для оптимальных режимов требуют значительно большей частоты вращения ТНА.

2. Низкая температура. Криогенное топливо. Перед заправкой необходимо проводить многочасовое захолаживание (и/или переохлаждение) баков и всего тракта. Баки РН "Falocn 9FT" - взгляд изнутри:

Подробнее о "сюрпризах":
"МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМАССООБМЕННЫХ ПРОЦЕССОВ В ВОДОРОДНЫХ СИСТЕМАХ" Н0Р В.А. ГордеевВ.П. Фирсов, А.П. Гневашев, Е.И. Постоюк
ФГУП «ГКНПЦ им. М.В. Хруничева, КБ «Салют»; "Московский авиационный институт (Государственный технический университет)

В работе дана характеристика основных математических моделей тепломассообменных процессов в баке и магистралях водорода кислородно-водородного разгонного блока 12КРБ. Выявлены аномалии в подаче водорода в ЖРД и предложено их математическое описание. Модели отработаны в ходе стендовых и летных испытаний, что дало возможность на их базе прогнозировать параметры серийных разгонных блоков различных модификаций и принимать необходимые технические решения по совершенствованию пневмогидравлических систем.


Низкая температура кипения затрудняет и закачку в баки и хранение этого топлива в баках и хранилищах.

3. Жидкий водород обладает некоторыми свойствами газа:

Коэффициент сжимаемости (pv/RT) при 273,15 К: 1,0006 (0,1013 МПа), 1,0124 (2,0266 МПа), 1,0644 (10,133 МПа), 1,134 (20,266 МПа), 1,277 (40,532 МПа) ;
Водород может находиться в орто- и пара-состояниях. Ортоводород (о-Н2) имеет параллельную (одного знака) ориентацию ядерных спинов. Пара-водород (п-Н2)-антипараллельную.

При обычных и высоких температурах Н 2 (нормальный водород, н-Н2) представляет собой смесь 75% орто- и 25% пара-модификаций, которые могут взаимно превращаться друг в друга (орто-пара-превращение). При превращении о-Н 2 в п-Н 2 выделяется тепло (1418 Дж/моль) .


Это всё накладывает дополнительные трудности в проектировании магистралей, ЖРД, ТНА, циклограммы работы, и особенно насосов.

4. Газообразный водород быстрее других газов распространяется в пространстве, проходит через мелкие поры, при высоких температурах сравнительно легко проникает сквозь сталь и другие материалы. Н 2г обладает высокой теплопроводностью, равной при 273,15 К и 1013 гПа 0,1717 Вт/(м*К) (7,3 по отношению к воздуху).

Водород в обычном состоянии при низких температурах малоактивен, без нагревания реагирует лишь с F 2 и на свету с Сl 2 . С неметаллами водород взаимодействует активнее, чем с металлами. С кислородом реагирует практически необратимо, образуя воду с выделением 285,75 МДж/моль тепла;

5. Со щелочными и щелочно-земельными металлами, элементами III, IV, V и VI группы периодической системы, а также с интерметаллическими соединениями водород образует гидриды. Водород восстанавливает оксиды и галогениды многих металлов до металлов, ненасыщенные углеводороды – до насыщенных (см. ).
Водород очень легко отдает свой электрон. В растворе отрывается в виде протона от многих соединений, обусловливая их кислотные свойства. В водных растворах Н+ образует с молекулой воды ион гидроксония Н 3 О. Входя в состав молекул различных соединений, водород склонен образовывать со многими электроотрицательными элементами (F, О, N, С, В, Cl, S, Р) водородную связь.

6. Пожароопастность и взрывоопасность. Можно не рассусоливать: гремучую смесь все знают.
Смесь водорода с воздухом взрывается от малейшей искры в любой концентрации - от 5 до 95 процентов.

Впечатляет Space Shuttle Main Engine (SSME)?


Теперь прикиньте его стоимость!
Вероятно, увидев это и посчитав затраты (стоимость вывода на орбиту 1 кг ПН), законодатели и те кто рулит бюджетом США и NASA в частности... решили "ну его на фиг".
И я их понимаю - на РН "Союз" и дешевле, и безопаснее, да использование РД-180/181 снимает многие проблемы американских РН и существенно экономит деньги налогоплательщиков самой богатой страны мира.

Самый лучший ракетный двигатель - это такой двигатель, который вы можете произвести/купить, при этом он будет обладать тягой в требуемом вам диапазоне (не слишком большой или маленькой) и будет эффективным настолько (удельный импульс, давление в камере сгорания), что его цена не станет неподъемной для вас. /Филипп Терехов@lozga

Наиболее освоены водородные двигатели в США.
Сейчас мы позиционируемся на 3-4 месте в "Водородном клубе" (после Европы, Японии и Китая/Индии).

Отдельно упомяну твёрдый и металлический водород.


Твердый водород кристаллизуется в гексагональной решетке (а = = 0,378 нм, с = 0,6167 нм), в узлах которой расположены молекулы Н 2 , связанные между собой слабыми межмолекулярными силами; плотность 86,67 кг/м³; С° 4,618 Дж/(моль*К) при 13 К; диэлектрик. При давлении свыше 10000 МПа предполагается фазовый переход с образованием структуры, построенной из атомов и обладающей металлическими свойствами. Теоретически предсказана возможность сверхпроводимости "металлический водород".

Твёрдый водород-твёрдое агрегатное состояние водорода.
Температура плавления −259,2 °C (14,16 К).
Плотностью 0,08667 г/см³ (при −262 °C).
Белая снегоподобная масса, кристаллы гексагональной сингонии.


Шотландский химик Дж. Дьюар в 1899 году впервые получил водород в твёрдом состоянии. Для этого он использовал регенеративную охлаждающую машину, основанную на эффекте .

Беда с ним. Он постоянно теряется: . Оно и понятно: получен кубик из молекул: 6х6х6. Просто "гигантские" объёмы - прям хоть сейчас "заправляй" ракету. Почему-то мне это напомнило . Это нано-чудо не могут найти уже лет 7 или больше.

Анамезон, антивещество, метастабильный гелий пока оставлю за кадром.


...
Гидразиновые топлива ("вонючки")
Гидразин-N2H4


Состояние при н.у.- бесцветная жидкость
Молярная масса=32.05 г/моль
Плотность=1.01 г/см³


Очень распространенное топливо.
Хранится долго, и его за это "любят". Широко используется в ДУ КА и МБР/БРПЛ, где долгохранимость имеет критическое значение.

Кого смутил Iуд в размерности Н*с/кг отвечаю: это обозначение "любят" военные.
Ньютон - производная единица, исходя из она определяется как сила, изменяющая за 1 секунду скорость тела массой 1 кг на 1 м/с в направлении действия силы. Таким образом, 1 Н = 1 кг·м/с 2 .
Соответственно: 1 Н*с/кг =1 кг·м/с 2 *с/кг=м/с.
Освоен в производстве.

Недостатки: токсичен, вонючий.

Для человека степень токсичности гидразина не определена. По расчётам S. Krop опасной концентрацией следует считать 0,4 мг/л. Ch. Comstock с сотрудниками полагает, что предельно допустимая концентрация не должна превышать 0,006 мг/л. Согласно более поздним американским данным, эта концентрация при 8-часовой экспозиции снижена до 0,0013 мг/л. Важно отметить при этом, что порог обонятельного ощущения гидразина человеком значительно превышает указанные числа и равен 0,014-0,030 мг/л. Существенным в этой связи является и тот факт, что характерный запах ряда гидразинопроизводных ощущается лишь в первые минуты контакта с ними. В дальнейшем вследствие адаптации органов обоняния, это ощущение исчезает, и человек, не замечая того, может длительное время находиться в зараженной атмосфере, содержащей токсические концентрации названного вещества.

Пары гидразина при адиабатном сжатии взрываются. Склонен к разложению, что однако позволяет его использовать как монотопливо для ЖРД малой тяги (ЖРДМТ). В силу освоенности производства более распространен в США.

Несимметричный диметилгидразин (НДМГ)-H 2 N-N(CH 3) 2

Хим. формула:C2H8N2,Рац. формула:(CH3)2NNH2
Состояние при н.у.- жидкое
Молярная масса=60,1 г/моль
Плотность=0,79±0,01 г/см³


Широко используется на военных двигателях в следствие своей долгохранимости. При освоении технологии ампулирования - практически исчезли все проблемы (кроме утилизации и аварий припусках).

Имеет более высокий импульс по сравнению с гидразином.

Плотность и удельный импульс с основными окислителями ниже керосина с теми же окислителями. Самовоспламенятся с азотными окислителями. Освоен в производстве в СССР.
Более распространен в СССР.
А в реактивном двигателе французского истребителя-бомбардировщика (хорошее видео-рекомендую) НДМГ используют как активизирующую добавку к традиционному топливу.

По поводу гидразиновых топлив.

Удельная тяга равна отношению тяги к весовому расходу топлива; в этом случае она измеряется в секундах (с = Н·с/Н = кгс·с/кгс). Для перевода весовой удельной тяги в массовую её надо умножить на ускорение свободного падения (примерно равное 9,81 м/с²)

За кадром остались:
Анилин, метил-, диметил- и триметиламины и CH 3 NHNH 2 -Метилгидразин (он же монометилгидразин или гептил) и пр.

Они не так распространены. Главное достоинство горючих группы гидразина - долгохранимость при использовании высококипящих окислителей. Работать с ними очень неприятно-токсичны горючие, агрессивные окислители, токсичны продукты сгорания.


На профессиональном жаргоне эти топлива называют "вонючими" или "вонючками".

Можно с высокой степенью уверенности сказать, что если на РН стоят "вонючие" двигатели, то "до замужества" она была боевой ракетой (МБР, БРПЛ или ЗУР - что уже редкость) . Химия на службе и армии и гражданки.

Исключение, пожалуй, лишь РН Ariane - творение кооператива: Aérospatiale, Matra Marconi Space, Alenia, Spazio, DASA и др. Её миновала в "девичестве" подобная боевая участь.

Военные практически все перешли на РДТТ, как более удобные в эксплуатации. Ниша для "вонючих" топлив в космонавтике сузилась до использования в ДУ КА, где требуется долгое хранение без особых материальных или энергетических затрат.
Пожалуй, кратко обзор можно выразить графически:

Активно работают ракетчики и с метаном. Особых эксплуатационных трудностей нет: позволяет неплохо поднять давление в камере (до 40 М Па) и получить хорошие характеристики.
() и остальными природными газами (СПГ).

О прочих направления по повышению характеристик ЖРД (металлизация горючих, использование Не 2 , ацетама и прочем) я напишу позже. Если будет интерес.

Использование эффекта свободных радикалов-хорошая перспектива.
Детонационное горение-возможность для долгожданного прыжка на Марс.

Послесловие:

вообще все ракетные ТК (кроме НТК), а так же попытка изготовить их в домашних условиях- очень опасны. Предлагаю внимательно ознакомиться:
. Смесь, которую он готовил на плите в кастрюле, ожидаемо взорвалась. В итоге мужик получил огромное количество ожогов и провел в больнице пять дней.

Все домашние (гаражные) манипуляции с такими химическими компонентами чрезвычайно опасны, а порой и противозаконны. К местам их разлива без ОЗК и противогаза ЛУЧШЕ не подходить:

Как и с разлитой ртутью: звонить в МЧС, быстро приедут и всё профессионально подберут.

Всем спасибо, кто смог вытерпеть всё это до конца.

Первоисточники:
Качур П. И., Глушко А. В. "Валентин Глушко. Конструктор ракетных двигателей и космических систем", 2008.
Г.Г. Гахун "Конструкция и проектирование жидкостных ракетных двигателей", Москва, "Машиностроение, 1989.
Возможность увеличения удельного импульса жидкостного ракетного двигателя
при добавлении в камеру сгорания гелия С.А. Орлин МГТУ им. Н.Э. Баумана, Москва
М.С.Шехтер. "Топлива и рабочие тела ракетных двигателей", Машиностроение" 1976
Завистовский Д. И."Беседы о ракетных двигателях".
Филипп Терехов @lozga (www.geektimes.ru).
"Виды топлива и их характеристика.Топливо горючие вещества, используемые для получения тепла. Состав топлива Горючая часть - углерод С-водород Н-сера."-презентация Оксана Касеева
Факас С.С."Основы ЖРД. Рабочие тела"
Использованы фото и видеоматериалы с сайтов:

http://technomag.bmstu.ru
www.abm-website-assets.s3.amazonaws.com
www.free-inform.ru
www.rusarchives.ru
www.epizodsspace.airbase.ru
www.polkovnik2000.narod.ru
www.avia-simply.ru
www.arms-expo.ru
www.npoenergomash.ru
www.buran.ru
www.fsmedia.imgix.net
www.wikimedia.org
www.youtu.be
www.cdn.tvc.ru
www.commi.narod.ru
www.dezinfo.net
www.nasa.gov
www.novosti-n.org
www.prirodasibiri.ru
www.radikal.ru
www.spacenews.com
www.esa.int
www.bse.sci-lib.com
www.kosmos-x.net.ru
www.rocketpolk44.narod.ru
www.criotehnika.ru
www.трансавтоцистерна.рф
www.chistoprudov.livejournal.com/104041.html
www.cryogenmash.ru
www.eldeprocess.ru
www.chemistry-chemists.com
www.rusvesna.su
www.arms-expo.ru
www.armedman.ru
www.трансавтоцистерна.рф
www.ec.europa.eu
www.mil.ru
www.kbkha.ru
www.naukarus.com

Вопрос снижения стоимости запусков ракет-носителей стоял всегда. Во времена космической гонки СССР и США мало задумывались о затратах - престиж страны стоил неизмеримо дороже. Сегодня сокращение расходов «по всем фронтам» стало общемировым трендом. Топливо составляет всего 0,2…0,3% от стоимости всей ракеты-носителя, но кроме стоимости топлива важен еще такой параметр, как его доступность. А здесь уже есть вопросы. За последние 50 лет список жидких горючих, широко использующихся в ракетно-космической отрасли мало изменился. Давайте же их перечислим: керосин, водород и гептил. Каждое из них имеет свои особенности и по-своему интересно, но у всех есть хотя бы один серьёзный недостаток. Вкратце рассмотрим каждое из них.

Керосин

Начал применяться ещё в 50-х годах и остаётся востребован и по сей день - именно на нём летают наша Ангара и Falcon 9 от SpaceX . Обладает множеством преимуществ, среди которых: высокая плотность, низкая токсичность, обеспечивает высокий удельный импульс, пока что приемлемая цена. Но производство керосина сегодня сопряжено с большими трудностями. Например, ракеты Союз, которые делают в Самаре, сейчас летают на искусственно созданном горючем, потому что изначально для создания керосина для этих ракет использовались только определенные сорта нефти из конкретных скважин. В основном это нефть Анастасиевско-Троицкого месторождения в Краснодарском крае. Но нефтяные скважины истощаются, и ныне используемый керосин является смешением композиций, которые добываются из нескольких скважин. Заветную марку РГ-1 получают с помощью дорогостоящей перегонки. По оценкам экспертов, проблема дефицита керосина будет только усугубляться.

«Ангара 1.1» на керосиновом двигателе РД-193

Водород

Сегодня водород, наряду с метаном, является одним из самых перспективных ракетных горючих. На нём летает сразу несколько современных ракет и разгонных блоков. В паре с кислородом он (после фтора) выдаёт самый высокий удельный импульс и для использования в верхних ступенях ракеты (или разгонных блоках) подходит идеально. Но чрезвычайно низкая плотность не позволяет в полной мере использовать его для первых ступеней ракет. Есть у него ещё один недостаток - высокая криогенность. Если ракета заправлена водородом, то он находится при температуре около 15 кельвинов (-258 по Цельсию). Это приводит к дополнительным затратам. Если сравнивать в керосином, то доступность водорода достаточно высока и его получение не является проблемой.

«Delta-IV Heavy» на водородных двигателях RS-68A

Гептил

Он же НДМГ или несимметричный диметилгидразин. У этого горючего всё ещё остаются сферы применения, но оно постепенно отходит на задний план. И причиной тому его высокая токсичность. Он обладает почти такими же, как керосин энергетическими показателями и является высококипящим компонентом (хранение при комнатной температуре) и, поэтому, в советское время использовался достаточно активно. Например, ракета Протон летает на высокотоксичной паре гептил+амил, каждый из которых способен убить человека, вдохнувшего по неосторожности их пары. Использование таких топлив в современное время неоправдано и является неприемлемым. Горючее находит применение в спутниках и межпланетных зондах, где оно, к сожалению, незаменимо.

«Протон-М» на гептиловых двигателях РД-253

Метан как альтернатива

Но есть ли топливо, которое удовлетворит всех и будет стоить дешевле всех? Возможно, это метан. Тот самый голубой газ, на котором некоторые из вас сегодня готовили пищу. Предлагаемое горючее является перспективным, активно осваивается другими отраслями промышленности, обладает более широкой сырьевой базой по сравнению с керосином и низкой стоимостью - это является важным моментом, учитывая прогнозируемые проблемы производства керосина. Метан как по плотности, так и по эффективности находится между керосином и водородом. Способы получения метана многочисленны. Главный источник метана природный газ, который состоит на 80..96% из метана. Остальное - это пропан, бутан и другие газы того же ряда, которые можно вообще не удалять, они очень схожи по свойствам с метаном. Другими словами, можно просто сжижать природный газ и использовать его как ракетное топливо. Метан можно получать и из других источников, например, переработкой отходов животноводства. Возможность использования метана в качестве ракетного топлива рассматривается уже на протяжении десятков лет, однако сейчас есть только стендовые варианты и экспериментальные образцы таких двигателей. Например, в химкинском НПО «Энергомаш» исследования в части использования сжиженного газа в двигателях велись с 1981 года. Прорабатываемая сейчас в «Энергомаше» концепция предусматривает разработку однокамерного двигателя тягой в 200 т на топливе «жидкий кислород - сжиженный метан» для первой ступени перспективного носителя легкого класса. Космическая техника ближайшего будущего обещает быть многоразовой. И тут открывается ещё одно преимущество метана. Он криогенный, а, значит, достаточно нагреть двигатель хотя бы до температуры -160 по Цельсию (а лучше выше) и двигатель сам освободится от компонентов топлива. По мнению специалистов он более всего подходит для создания многоразовых ракет-носителей. Вот что о метане думает главный конструктор НПО «Энергомаш» Владимир Чванов:

Удельный импульс у двигателя на СПГ высокий, но это преимущество нивелируется тем, что у метанового топлива меньшая плотность, поэтому в сумме получается незначительное энергетическое преимущество. С конструкционной точки зрения метан привлекателен. Чтобы освободить полости двигателя, нужно только пройти цикл испарения - то есть двигатель легче освобождается от остатков продуктов. За счет этого метановое топливо более приемлемо с точки зрения создания двигателя многоразового использования и летательного аппарата многоразового применения.

Ещё один довод в пользу использования метана - возможность добывать его на астероидах, планетах и их спутниках, обеспечивая возвращаемые миссии топливом. Там намного легче добывать метан, чем керосин. Естественно, о возможности привозить топливо с собой не может быть и речи. Перспектива таких дальних миссий, весьма отдалённая, но некоторые работы уже ведутся.

Будущее, которое так и не наступило

Так почему же метан в России так и не стал практически используемым горючим? Ответ достаточно прост. С начала 80-х в СССР, а потом и в России не было создано ни одного нового ракетного двигателя. Все российские «новинки» - это модернизация и переименование советского наследия. Единственный честно созданный комплекс - «Ангара» - с самого начала планировался как керосиновый транспорт. Его переделка обойдётся в копеечку. Вообще, Роскосмос постоянно отклоняет метановые проекты потому, что там связывают «добро» на хотя бы один подобный проект с «добром» на полную перестройку отрасли с керосина и гептила на метан, что считается долгим и дорогостоящим мероприятием.

Двигатели

На данный момент есть несколько компаний, заявляющих о скором использовании метана в своих ракетах. Двигатели, которые создаются:

FRE-1 /

Ракетные Двигатели

Реферат выполнила

Ученица 9Б класса

Кожасова Индира


введение. 2

назначение и виды ракетных двигателей. 2

Термохимические ракетные двигатели. 3

Ядерные ракетные двигатели. 6

другие виды ракетных двигателей. 8

Электрические ракетные двигатели. 9

Использованная литература. 10

Ракетный двигатель – это реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Наиболее широко применяются химические ракетные двигатели. Разрабатываются и испытываются другие виды ракетных двигателей – электрические, ядерные и другие. На космических станциях и аппаратах широко применяют и простейшие ракетные двигатели, работающие на сжатых газах. Обычно в качестве рабочего тела в них используют азот.

По назначению ракетные двигатели подразделяют на несколько основных видов: разгонные (стартовые), тормозные, маршевые, управляющие и другие. Ракетные двигатели в основном применяются на ракетах (отсюда взято название). Кроме этого ракетные двигатели иногда применяют в авиации. Ракетные двигатели являются основными двигателями в космонавтике.

По виду применяемого топлива (рабочего тела) ракетные двигатели подразделяются на:

Твердотопливные

Жидкостные

Военные (боевые) ракеты обычно имеют твердотопливные двигатели. Это связанно с тем, что такой двигатель заправляется на заводе и не требует обслуживания весь срок хранения и службы самой ракеты. Часто твердотопливные двигатели применяют как разгонные для космических ракет. Особенно широко, в этом качестве, их применяют в США, Франции, Японии и Китае.

Жидкостные ракетные двигатели имеют более высокие тяговые характеристики, чем твердотопливные. Поэтому их применяют для вывода космических ракет на орбиту вокруг Земли и на межпланетные перелёты. Основными жидкими топливами для ракет являются керосин, гептан (диметилгидразин) и жидкий водород. Для таких видов топлива обязательно необходим окислитель (кислород). В качестве окислителя в таких двигателях применяют азотную кислоту и сжиженный кислород. Азотная кислота уступает сжиженному кислороду по окислительным свойствам, но не требует поддержания особого температурного режима при хранении, заправки и использовании ракет.

Двигатели для космических полетов отличаются от земных тем, что они при возможно меньшей массе и объеме должны вырабатывать как можно большую мощность. Кроме того, к ним предъявляются такие требования, как исключительно высокая эффективность и надежность, значительное время работы. По виду используемой энергии двигательные установки космических аппаратов подразделяются на четыре типа: термохимические, ядерные, электрические, солнечно – парусные. Каждый из перечисленных типов имеет свои преимущества и недостатки и может применяться в определенных условиях.

В настоящее время космические корабли, орбитальные станции и беспилотные спутники Земли выводятся в космос ракетами, оснащенными мощными термохимическими двигателями. Существуют также миниатюрные двигатели малой силы тяги. Это уменьшенная копия мощных двигателей. Некоторые из них могут уместиться на ладони. Сила тяги таких двигателей очень мала, но её бывает достаточно, чтобы управлять положением корабля в пространстве.

Известно, что в двигателе внутреннего сгорания, топке парового котла – всюду, где происходит сгорание, самое активное участие принимает атмосферный кислород. В космическом пространстве воздуха нет, а для работы ракетных двигателей в космическом пространстве необходимо иметь два компонента – горючее и окислитель.

В жидкостных термохимических ракетных двигателях в качестве горючего используется спирт, керосин, бензин, анилин, гидразин, диметилгидразин, жидкий водород. В качестве окислителя применяют жидкий кислород, перекись водорода, азотная кислота. Возможно, в будущем будет применяться в качестве окислителя жидкий фтор, когда будут изобретены способы хранения и использования такого активного химического вещества.

Горючее и окислитель для жидкостных реактивных двигателей хранятся раздельно, в специальных баках и с помощью насосов подаются в камеру сгорания. При их соединении в камере сгорания развивается температура до 3000 – 4500 °С.

Продукты сгорания, расширяясь, приобретают скорость от 2500 до 4500 м/с. Отталкиваясь от корпуса двигателя, они создают реактивную тягу. При этом, чем больше масса и скорость истечения газов, тем больше силы тяги двигателя.

Удельную тягу двигателей принято оценивать величиной тяги создаваемой единицей массы топлива сгораемой за одну секунду. Эту величину называют удельным импульсом ракетного двигателя и измеряют в секундах (кг тяги / кг сгоревшего топлива в секунду). Лучшие твердотопливные ракетные двигатели имеют удельный импульс до 190 с., то есть 1 кг топлива сгорающий за одну секунду создает тягу 190 кг. Водородно-кислородный ракетный двигатель имеет удельный импульс 350 с. Теоретически водородно-фторовый двигатель может развить удельный импульс более 400 с.

Обычно применяемая схема жидкостного ракетного двигателя работает следующим образом. Сжатый газ создает необходимый напор в баках с криогенным горючим, для предотвращения возникновения газовых пузырей в трубопроводах. Насосы подают топливо в ракетные двигатели. Топливо впрыскивается в камеру сгорания через большое количество форсунок. Также через форсунки в камеру сгорания впрыскивают и окислитель.

В любой машине при сгорании топлива образуются большие тепловые потоки, нагревающие стенки двигателя. Если не охлаждать стенки камеры, то она быстро прогорит, из какого бы материала она ни была сделана. Жидкостный реактивный двигатель, как правило, охлаждают одним из компонентов топлива. Для этого камеру делают двух стеночной. В зазоре между стенками протекает холодный компонент топлива.

Большую силу тяги создает двигатель, работающий на жидком кислороде и жидком водороде. В реактивной струе этого двигателя газы мчатся со скоростью немногим больше 4 км/с. Температура этой струи около 3000°С, и состоит она из перегретого водяного пара, который образуется при сгорании водорода и кислорода. Основные данные типичных топлив для жидкостных реактивных двигателей приведены в таблице №1

Но у кислорода наряду с достоинствами есть и один недостаток – при нормальной температуре он представляет собой газ. Понятно, что применять в ракете газообразный кислород нельзя ведь в этом случае пришлось бы его хранить под большим давлением в массивных баллонах. Поэтому уже Циолковский, первым предложивший кислород в качестве компонента ракетного топлива, говорил о жидком кислороде как о компоненте без которого космические полеты не будут возможны.

Чтобы превратить кислород в жидкость, его нужно охладить до температуры -183°С. Однако сжиженный кислород легко и быстро испаряется, даже если его хранить в специальных теплоизолированных сосудах. Поэтому нельзя долго держать снаряженной ракету, двигатель которой использует в качестве окислителя жидкий кислород. Заправлять кислородный бак такой ракеты приходится непосредственно перед запуском. Если такое возможно для космических и других ракет гражданского назначения, то для военных ракет, которые требуется поддерживать в готовности к немедленному запуску в течение длительного времени такое неприемлемо. Азотная кислота не обладает таким недостатком и поэтому является «сохраняющимся» окислителем. Этим объясняется её прочное положение в ракетной технике, особенно военной, несмотря на существенно меньшую силу тяги, которую она обеспечивает.

Использование наиболее сильного из всех известных химии окислителей – фтора позволит существенно увеличить эффективность жидкостных реактивных двигателей. Однако жидкий фтор очень неудобен в эксплуатации и хранении из-за ядовитости и низкой температуры кипения (-188°С). Но это не останавливает ученых-ракетчиков: экспериментальные двигатели на фторе уже существуют и испытываются в лабораториях и на экспериментальных стендах.

Советский ученый Ф.А. Цандер еще в тридцатые годы в своих трудах предложил использовать в межпланетных полетах в качестве горючего легкие металлы, из которых будет изготовлен космический корабль – литий, бериллий, алюминий и др. В особенности как добавку к обычному топливу, например водородно-кислородному. Подобные «тройные композиции» способны обеспечить наибольшую из возможных для химических топлив скорость истечения – до 5 км/с. Но это уже практически предел ресурсов химии. Большего она практически сделать не может.

Хотя в предлагаемом описании пока преобладают жидкостные ракетные двигатели, нужно сказать, что первым в истории человечества был создан термохимический ракетный двигатель на твердом топливе – РДТТ.

Топливо – например специальный порох – находится непосредственно в камере сгорания. Камера сгорания с реактивным соплом, заполненная твердым топливом – вот и вся конструкция. Режим сгорания твердого топлива зависит от предназначения РДТТ (стартовый, маршевый или комбинированный). Для твердотопливных ракет применяемых в военном деле характерно наличие стартового и маршевого двигателей. Стартовый РДТТ развивает большую тягу на очень короткое время, что необходимо для схода ракеты с пусковой установки и её первоначального разгона. Маршевый РДТТ предназначен для поддержания постоянной скорости полета ракеты на основном (маршевом) участке траектории полета. Различия между ними заключаются в основном в конструкции камеры сгорания и профиле поверхности горения топливного заряда, которые определяют скорость горения топлива от которой зависит время работы и тяга двигателя. В отличие от таких ракет космические ракеты-носители для запуска спутников Земли, орбитальных станций и космических кораблей, а также межпланетных станций работают только в стартовом режиме со старта ракеты до вывода объекта на орбиту вокруг Земли или на межпланетную траекторию.

В целом твердотопливные ракетные двигатели на имеют много преимуществ перед двигателями на жидком топливе: они просты в изготовлении, длительное время могут храниться, всегда готовы к действию, относительно взрывобезопасны. Но по удельной тяге твердотопливные двигатели на 10-30% уступают жидкостным.

Один из основных недостатков ракетных двигателей, работающих на жидком топливе, связан с ограниченной скоростью истечения газов. В ядерных ракетных двигателях представляется возможным использовать колоссальную энергию, выводящуюся при разложении ядерного «горючего», для нагревания рабочего вещества.

Принцип действия ядерных ракетных двигателей почти не отличается от принципа действия термохимических двигателей. Разница заключается в том, что рабочее тело нагревается не за счет своей собственной химической энергии, а за счет «посторонней» энергии, выделяющейся при внутриядерной реакции. Рабочее тело пропускается через ядерный реактор, в котором происходит реакция деления атомных ядер (например, урана), и при этом нагревается.

У ядерных ракетных двигателей отпадает необходимость в окислителе и поэтому может быть использована только одна жидкость.

В качестве рабочего тела целесообразно применять вещества, позволяющие двигателю развивать большую силу тяги. Этому условию наиболее полно удовлетворяет водород, затем следует аммиак, гидразин и вода.

Процессы, при которых выделяется ядерная энергия, подразделяют на радиоактивные превращения, реакции деления тяжелых ядер, реакцию синтеза легких ядер.

Радиоизотопные превращения реализуются в так называемых изотопных источниках энергии. Удельная массовая энергия (энергия, которую может выделить вещество массой 1кг) искусственных радиоактивных изотопов значительно выше, чем химических топлив. Так, для 210 Ро она равна 5*10 8 КДж/кг, в то время как для наиболее энергопроизводительного химического топлива (бериллий с кислородом) это значение не превышает 3*10 4 КДж/кг.

К сожалению, подобные двигатели применять на космических ракетах-носителях пока не рационально. Причина этого – высокая стоимость изотопного вещества и трудности эксплуатации. Ведь изотоп выделяет энергию постоянно, даже при его транспортировке в специальном контейнере и при стоянке ракеты на старте.

В ядерных реакторах используется более энергопроизводительное топливо. Так, удельная массовая энергия 235 U (делящегося изотопа урана) равна 6,75*10 9 КДж/кг, то есть примерно на порядок выше, чем у изотопа 210 Ро. Эти двигатели можно «включать» и «выключать», ядерное горючее (233 U, 235 U, 238 U, 239 Pu) значительно дешевле изотопного. У таких двигателей в качестве рабочего тела может применяться не только вода, но и более эффективные рабочие вещества – спирт, аммиак, жидкий водород. Удельная тяга двигателя с жидким водородом равна 900 с.

В простейшей схеме ядерного ракетного двигателя с реактором, работающим на твердом ядерном горючем рабочее тело размещено в баке. Насос подает его в камеру двигателя. Распыляясь с помощью форсунок, рабочее тело вступает в контакт с тепловыделяющим ядерным горючим, нагревается, расширяется и с большой скоростью выбрасывается через сопло наружу.

Ядерное горючее по запасу энергии превосходит любой другой вид топлива. Тогда возникает закономерный вопрос – почему же установки на этом горючем имеют все-таки сравнительно небольшую удельную тягу и большую массу? Дело в том, что удельная тяга твердофазного ядерного ракетного двигателя ограничена температурой делящегося вещества, а энергетическая установка при работе испускает сильное ионизирующее излучение, оказывающее вредное действие на живые организмы. Биологическая защита от таких излучений имеет большой вес не применима на космических летательных аппаратах.

Практические разработки ядерных ракетных двигателей, использующих твердое ядерное горючее, были начаты в середине 50-х годов 20-го столетия в Советском Союзе и США, почти одновременно со строительством первых ядерных электростанций. Работы проводились в обстановке повышенной секретности, но известно, что реального применения в космонавтике такие ракетные двигатели до сих пор не получили. Все пока ограничилось использованием изотопных источников электроэнергии относительно небольшой мощности на беспилотных искусственных спутниках Земли, межпланетных космических аппаратах и всемирно известном советском «луноходе».

Существуют и более экзотические проекты ядерных ракетных двигателей, в которых делящееся вещество находится в жидком, газообразном или даже плазменном состоянии, однако реализация подобных конструкций на современном уровне техники и технологий нереальна.

Существуют, пока на стадии теоретической или лабораторной следующие проекты ракетных двигателей:

Импульсные ядерные ракетные двигатели использующие энергию взрывов небольших ядерных зарядов;

Термоядерные ракетные двигатели, в которых в качестве топлива может использоваться изотоп водорода. Энергопроизводительность водорода в такой реакции составляет 6,8*10 11 КДж/кг, то есть примерно на два порядка выше производительности ядерных реакций деления;

Солнечно-парусные двигатели – в которых используется давление солнечного света (солнечный ветер), существование которого опытным путем доказал русский физик П.Н. Лебедев еще в 1899 году. Расчетным путем ученые установили, что аппарат массой в 1 т, снабженный парусом диаметром 500 м, может долететь от Земли до Марса примерно за 300 суток. Однако эффективность солнечного паруса быстро уменьшается с удалением от Солнца.

Почти все рассмотренные выше ракетные двигатели, развивают огромную силу тяги и предназначены для вывода космических аппаратов на орбиту вокруг Земли и разгона их до космических скоростей для межпланетных полетов. Совсем другое дело – двигательные установки для уже выведенных на орбиту или на межпланетную траекторию космических аппаратов. Здесь, как правило, нужны двигатели малой мощности (несколько киловатт или даже ватт) способные работать сотни и тысячи часов и многократно включаться и выключаться. Они позволяют поддерживать полет на орбите или по заданной траектории, компенсируя сопротивление полету создаваемое верхними слоями атмосферы и солнечным ветром.

В электрических ракетных двигателях разгон рабочего тела до определенной скорости производится нагреванием его электрической энергией. Электроэнергия поступает от солнечных батарей или атомной электростанции. Способы нагревания рабочего тела различны, но реально применяется в основном электродуговой. Он показал себя очень надежным и выдерживает большое количество включений. В качестве рабочего тела в электродуговых двигателя применяют водород. С помощью электрической дуги водород нагревается до очень высокой температуры и он превращается в плазму - электрически нейтральную смесь положительных ионов и электронов. Скорость истечения плазмы из двигателя достигает 20 км/с. Когда ученые решат проблему магнитной изоляции плазмы от стенок камеры двигателя, тогда можно будет значительно повысить температуру плазмы и довести скорость истечения до 100 км/с.

Первый электрический ракетный двигатель был разработан в Советском Союзе в 1929-1933 гг. под руководством В.П. Глушко (впоследствии он стал создателем двигателей для советских космических ракет и академиком) в знаменитой газодинамической лаборатории (ГДЛ).

1. Советский энциклопедический словарь

2. С.П. Уманский. Космонавтика сегодня и завтра. Кн. Для учащихся.

Мощную космическую ракету движет та же сила, что и праздничный увеселительный фейерверк в парке культуры и отдыха, - сила реакции газов, вытекающих из сопла. Вырываясь огненным столбом из ракетного двигателя, они толкают сам двигатель и все, что с ним конструктивно связано, в противоположном направлении.

Главное принципиальное отличие любого реактивного двигателя (ракетные двигатели-могучая ветвь обширного семейства реактивных двигателей, двигателей прямой реакции) состоит в том, что он непосредственно вырабатывает движение, сам приводит в движение связанный с ним транспортный аппарат без участия промежуточных агрегатов, называемых движителями. У самолета с поршневыми или турбовинтовыми двигателями мотор заставляет вращаться воздушный винт, который, врезаясь в воздух, отбрасывает массу воздуха назад и заставляет самолет лететь вперед. В этом случае движителем служит воздушный винт. Аналогично работает гребной винт корабля: он отбрасывает массу воды. У автомобиля или поезда движителем служит колесо. И только реактивный двигатель не нуждается в опоре в окружающей среде, в массе, от которой бы отталкивался аппарат. Масса, которую реактивный двигатель отбрасывает назад и получает благодаря этому движение вперед, находится в нем самом. Она называется рабочим телом, или рабочим веществом двигателя.

Обычно раскаленные газы, работающие в двигателе, образуются при сгорании топлива, т. е. при химической реакции бурного окисления горючего вещества. Химическая энергия сгорающих веществ преобразуется при этом в тепловую энергию продуктов сгорания. А тепловая энергия горячих газов, полученных в камере сгорания, превращается при их расширении в сопле в механическую энергию поступательного движения ракеты или реактивного самолета.

Энергия, используемая в этих двигателях, является результатом химической реакции. Поэтому такие двигатели и называются химическими ракетными двигателями.

Это не единственно возможный случай. В ядерных ракетных двигателях рабочее вещество должно получать энергию за счет тепла, выделяемого при реакции ядерного распада или синтеза. В некоторых типах электроракетных Двигателей рабочее вещество разгоняется и вовсе без участия тепла благодаря взаимодействию электрических и магнитных сил. В наши дни, однако, основа ракетной техники - химические, или, как их еще называют, термохимические ракетные двигатели.

Не все реактивные двигатели пригодны для космических полетов. Большой класс этих машин, так называемые воздушно-реактивные двигатели, используют для окисления горючего воздух окружающей среды. Естественно, они могут Работать только в пределах земной атмосферы.

Для работы в космосе используют два типа ракетных термохимических двигателей: ракетные двигатели твердого топлива (РДТТ) и жидкостные ракетные двигатели (ЖРД). В этих двигателях топливо содержит в себе все, что нужно для горения, т. е. и горючее, и окислитель. Только агрегатное состояние этого топлива различное. В РДТТ-это твердая смесь необходимых веществ. В ЖРД горючее и окислитель хранятся в жидком виде, обычно в отдельных баках, а воспламенение происходит в камере сгорания, где горючее смешивается с окислителем.

Движение ракеты возникает при отбрасывании рабочего вещества. Далеко не безразлично, с какой скоростью истекает из сопла реактивного двигателя рабочее тело. Физический закон сохранения количества движения говорит о том, что количество движения ракеты (произведение ее массы на скорость, с которой она летит) будет равно количеству движения рабочего тела. Значит, чем больше масса выбрасываемых из сопла газов и скорость их истечения, тем больше тяга двигателя, тем большую скорость можно придать ракете, тем больше может быть ее масса и полезная нагрузка.

В большом ракетном двигателе за несколько минут работы перерабатывается и с большой скоростью выбрасывается из сопла огромное количество топлива - рабочего тела. Чтобы увеличить скорость и массу ракеты, кроме разделения ее на ступени есть только один способ-увеличение тяги двигателей. А повысить тягу, не увеличивая расхода топлива, можно только наращивая скорость истечения газов из сопла.

Существует в ракетной технике понятие удельной тяги ракетного двигателя. Удельная тяга - это тяга, получаемая в двигателе при расходе одного килограмма топлива за одну секунду.

Удельной тяге идентичен удельный импульс - импульс, развиваемый ракетным двигателем на каждый килограмм расходуемого топлива (рабочего тела). Удельный импульс определяется отношением тяги двигателя к массе топлива, расходуемого за одну секунду. Удельный импульс - наиболее важная характеристика ракетного двигателя.

Удельный импульс двигателя пропорционален скорости истечения газов из сопла. Увеличение скорости истечения позволяет снизить расход топлива на один килограмм тяги, развиваемой двигателем. Чем больше удельная тяга, чем больше скорость истечения рабочего тела, тем экономичнее двигатель, тем меньше топлива нужно ракете для совершения одного и того же полета.

А скорость истечения непосредственно зависит от кинетической энергии движения молекул газа, от его температуры и, следовательно, от калорийности (теплотворной способности) топлива. Естественно, чем выше калорийность, энергопроизводительность топлива, тем меньше его нужно для совершения одной и той же работы.

Но скорость истечения зависит не только от температуры, она возрастает с уменьшением молекулярного веса рабочего вещества. Кинетическая энергия молекул при одной и той же температуре обратно пропорциональна их молекулярному весу. Чем меньше молекулярный вес топлива, тем больше объем газов, образующихся при его сгорании. Чем больше объем газов, образующихся при сгорании топлива, тем больше скорость их истечения. Поэтому водород в качестве компонента ракетного топлива выгоден вдвойне-из-за высокой теплотворной способности и малого молекулярного веса.

Весьма важной характеристикой ракетного двигателя является его удельная масса, т. е. масса двигателя, приходящаяся на единицу его тяги. Ракетный двигатель должен развивать большую тягу и в то же время быть очень легким. Ведь подъем каждого килограмма нагрузки в космос дается дорогой ценой, и если двигатель будет тяжелым, то он будет поднимать главным образом только себя. Большинство реактивных двигателей вообще имеет относительно небольшую удельную массу, но особенно хорош этот показатель у ЖРД и РДТТ. Это связано с простотой их устройства.

РДТТ и ЖРД

Ракетные двигатели твердого топлива предельно просты по устройству. У них, по существу, две основные части: камера сгорания и реактивное сопло. Топливным баком служит сама камера сгорания. Правда, в этом не только достоинство, но и весьма существенный недостаток. Двигатель трудно выключить, пока не выгорит все топливо. Его работу чрезвычайно сложно регулировать. Топливо должно гореть медленно, с более или менее постоянной скоростью, независимо от изменения давления и температуры. Регулировать величину тяги РДТТ можно лишь в определенных, заранее заданных пределах, подбирая твердотопливные заряды соответствующей геометрии и структуры. В РДТТ трудно регулировать не только силу тяги, но и ее направление. Для этого надо изменять положение тяговой камеры, а она очень велика, ведь в ней находится весь запас топлива. Появились твердотопливные ракеты с поворотными соплами, конструктивно они довольно сложны, но это позволяет решить проблему управления направлением тяги.

Однако ракетные двигатели твердого топлива имеют и ряд серьезных достоинств: постоянная готовность к действию, надежность и простота эксплуатации. РДТТ нашли широкое применение в военном деле.

Важнейшим элементом в РДТТ является заряд твердого топлива. Характеристики двигателя зависят и от элементов топлива, и от структуры и устройства заряда. Различают два основных типа твердых ракетных топлив: двухосновные, или коллоидные, и смесевые. Коллоидные топлива представляют собой твердый однородный раствор органических веществ, молекулы которых содержат окислительные и горючие элементы. Наиболее широко используется твердый раствор нитроцеллюлозы и нитроглицерина.

Смесевые топлива представляют собой механические смеси горючего и окислителя. В качестве окислителя в этих топливах обычно применяют неорганические кристаллические вещества-перхлорат аммония, перхлорат калия и др. Обычно такое топливо состоит из трех компонентов: кроме окислителя в него входят полимерное горючее, служащее связующим элементом, и второе горючее в виде порошкообразных металлических добавок, которые существенно улучшают энергетические характеристики топлива. Горючим-связующим могут быть полиэфирные и эпоксидные смолы, полиуретановый и полибутадиеновый каучук и др. Вторым горючим чаще всего служит порошкообразный алюминий, иногда бериллий или магний. Смесевые топлива обычно имеют больший удельный импульс, чем коллоидные, большую плотность, большую стабильность, лучше хранятся, более технологичны.

Заряды твердого топлива бывают скрепленные с корпусом камеры двигателя (их изготавливают заливкой топлива непосредственно в корпус) и вкладные, которые изготавливают отдельно и вставляют в корпус в виде одной или нескольких шашек.

Очень важна геометрическая форма заряда. Изменяя ее и используя бронирующие покрытия поверхностей заряда, которые не должны гореть, добиваются нужного изменения площади горения и соответственно давления газов в камере и тяги двигателя.

Есть заряды, обеспечивающие нейтральное горение. У них площадь горения остается неизменной. Так получается, если, например, шашка твердого топлива горит с торца или же одновременно с наружной и внутренней поверхности (для этого внутри заряда делается полость). При регрессивном горении поверхность горения уменьшается. Тек получается, если цилиндрическая шашка горит с наружной поверхности. И, наконец, для прогрессивного горения, которое обеспечивает увеличение давления в камере сгорания, нужно нарастание площади горения. Наиболее простым примером такого заряда служит шашка, горящая по внутренней цилиндрической поверхности.

Наиболее существенными преимуществами обладают скрепленные заряды с внутренним горением. В них горячие продукты сгорания не соприкасаются со стенками корпуса, что позволяет обходиться без специального наружного охлаждения. В космонавтике в настоящее время ракетные двигатели твердого топлива применяются ограниченно. Мощные РДТТ используются на некоторых американских ракетах-носителях, например, на ракете «Титан».

Большие современные РДТТ развивают тягу в сотни тонн, разрабатываются еще более мощные двигатели тягой в тысячи тонн, совершенствуются твердые топлива, конструируются системы управления тягой. И все же в космонавтике безусловно доминируют ЖРД. Главная причина этого - более низкая эффективность твердого ракетного топлива. Лучшие РДТТ имеют скорость истечения газов из сопла 2500 метров в секунду. У ЖРД удельная тяга выше и скорость истечения составляет (у лучших современных двигателей) 3500 метров в секунду, а используя топливо с очень высокой теплотворной способностью (например, жидкий водород в качестве горючего и жидкий кислород в качестве окислителя), можно получить скорость истечения четыре с половиной километра в секунду.

Для устройства и работы ЖРД огромное значение имеет топливо, на котором работает двигатель.

Известны топлива, которые выделяют энергию при реакции разложения, например, перекись водорода, гидразин. Они, естественно, состоят из одного компонента, одной жидкости. Однако наиболее широко применяются в ракетной технике химические топлива, выделяющие энергию при реакции горения. Они состоят из окислителя и горючего. Такие топлива могут быть тоже однокомпонентными, т. е. представлять собой одну жидкость. Это может быть вещество, в молекулу которого входят как окислительные, так и горючие элементы, например, нитрометан, или смесь окислителя и горючего, или раствор горючего в окислителе. Однако такие топлива обычно склонны к взрыву и малоупотребительны. Подавляющее большинство жидкостных ракетных двигателей работает на двухкомпонентном топливе. Окислитель и горючее хранятся в отдельных баках, и их смешение происходит в камере двигателя. Окислитель обычно составляет большую часть массы топлива - его расходуется в два - четыре раза больше, чем горючего. В качестве окислителя чаще всего применяются жидкий кислород, четырехокись азота, азотная кислота, перекись водорода. Как горючее используются керосин, спирт, гидразин, аммиак, жидкий водород и др.

На топливе, состоящем из жидкого кислорода и керосина, работала советская ракета-носитель «Восток», обеспечивавшая запуск многих наших космических кораблей с космонавтами на борту. На этом же топливе работали двигатели американских ракет «Атлас», «Титан», первой ступени ракеты «Сатурн-5», с помощью которой запускались на Луну космические корабли «Аполлон». Топливо, состоящее из жидкого кислорода и керосина, хорошо освоено в производстве и эксплуатации, надежно и дешево. Оно широко применяется в ЖРД.

В качестве горючего нашел применение несимметричный диметилгидразин. Это горючее в паре с окислителем - жидким кислородом - используется в двигателе РД-119, широко применяемом при запуске спутников «Космос». В этом двигателе достигнут наибольший удельный импульс для ЖРД, работающих на кислороде и высококипящих горючих.

Наиболее эффективное из широко применяемых в настоящее время ракетных топлив - жидкий кислород плюс жидкий водород. Оно применяется, например, в двигателях второй и третьей ступени ракеты «Сатурн-5».

Поиски новых, все более эффективных ракетных топлив продолжаются постоянно. Много работают ученые и конструкторы, чтобы использовать в ЖРД фтор, который обладает более сильным окислительным действием, чем кислород. Образуемые с применением фтора топлива позволяют получить наибольший удельный импульс для ЖРД и имеют высокую плотность. Однако использование его в ЖРД затруднено высокой химической агрессивностью и токсичностью жидкого фтора, высокой температурой сгорания (более 4500° С) и дороговизной.

Тем не менее в ряде стран ведутся разработки и стендовые испытания ЖРД на фторе. Впервые предложил использовать жидкий фтор для ЖРД еще Ф. А. Цандер в 1932 году, а в 1933 году В. П. Глушжо предложил в качестве окислителя смесь жидкого фтора и жидкого кислорода.

Многие топлива на основе фтора самовоспламеняются при смешении окислителя и горючего. Самовоспламеняются и некоторые топливные пары, не содержащие фтора. Самовоспламенение - большое достоинство топлива. Оно позволяет упростить конструкцию ЖРД и повысить его надежность. Некоторые топлива становятся самовоспламеняющимися при добавлении катализатора. Так, если к окислителю-жидкому кислороду- добавить сотую долю процента фтористого озона, то сочетание этого окислителя с керосином становится самовоспламеняющимся.

Самовоспламенение топлива (если оно не самовоспламеняющееся, то применяется пиротехническое или электрическое зажигание, или впрыскивание порции пускового самовоспламеняющегося топлива) происходит в камере двигателя. Камера - основной агрегат ЖРД, Именно в камере смешиваются компоненты топлива, происходит его сгорание, и в результате образуется газ с очень высокой температурой (2000-4500° С) и под высоким давлением (десятки и сотни атмосфер). Вытекая из камеры, этот газ и создает реактивную силу, тягу двигателя. Камера ЖРД состоит из камеры сгорания со смесительной головкой и сопла. Смешение компонентов топлива происходит в смесительной головке, горение - в камере сгорания, а вытекают газы через сопло. Обычно все агрегаты камеры выполняются как одно целое, Чаще всего камеры сгорания имеют цилиндрическую форму, но бывают они и коническими или шарообразными (грушевидными).

Смесительная головка - очень важная часть камеры сгорания и всего ЖРД. В ней происходит так называемое смесеобразование-впрыск, распыливание и смешение компонентов топлива. Компоненты топлива - окислитель и горючее - поступают в смесительную головку камеры раздельно. Через форсунки головки они вводятся в камеру благодаря разности давлений в системе подачи топлива и головке камеры. Чтобы реакция в камере сгорания протекала как можно быстрее и была как можно более полной - а это очень важное условие эффективности и экономичности двигателя, - необходимо обеспечить наиболее быстрое и полное образование топливной смеси, сгорающей в камере, добиться, чтобы каждая частица окислителя встретилась с частицей горючего.

Образование подготовленной к сгоранию топливной смеси состоит из трех процессов, переходящих один в другой - распыливания жидких компонентов, их испарения и смешения. При распыливании - дроблении жидкости на капли - значительно увеличивается ее поверхность и ускоряется процесс испарения. Очень важна -тонкость и однородность распыливания. Тонкость этого процесса характеризуется диаметром получаемых капель: чем меньше каждая капелька, тем лучше. Следующий после распыления этап подготовки топлива к сгоранию- его испарение. Необходимо обеспечить наиболее полное испарение окислителя и горючего за кратчайшее время. Процесс испарения образовавшихся при распыливании капель в камере ЖРД занимает всего от двух до восьми тысячных секунды.

В результате распыливания и испарения компонентов топлива образуются пары окислителя и горючего, из которых и получается горящая в камере двигателя смесь. Смешение компонентов начинается, по-существу, сразу же после поступления компонентов в камеру и заканчивается только по мере сгорания топлива. При самовоспламеняющихся топливах процесс горения начинается еще в жидкой фазе, во время распыливания топлива. При несамовоспламеняющихся топливах горение начинается в газовой фазе при подводе тепла от внешнего источника.

Жидкие компоненты топлива в камеру подают через расположенные в головке форсунки. Чаще всего применяются форсунки двух типов: струйные или центробежные. Но вот топливо распылено, перемешано, воспламенилось. При горении его в камере сгорания выделяется большое количество тепловой энергии. Дальнейшее преобразование энергии происходит в сопле. Удачная конструкция смесительной головки в первую очередь определяет совершенство двигателя - обеспечивает полноту сгорания топлива, устойчивость горения и т. д.

Сопло - часть камеры сгорания, в которой тепловая энергия сжатого рабочего тела (смеси газов) преобразуется в кинетическую энергию газового потока, т. е. происходит его разгон до скорости истечения из двигателя. Сопло обычно состоит из сужающейся и расширяющейся частей, которые соединены в критическом (минимальном) сечении.

Весьма сложная задача - обеспечить охлаждение камеры ЖРД. Обычно камера состоит из двух оболочек-внутренней огневой стенки и наружной рубашки. По пространству между оболочками протекает жидкость, охлаждающая внутреннюю стенку камеры ЖРД. Обычно для этого используется один из компонентов топлива. Нагретое горючее или окислитель отводится и поступает в головку камеры для использования, так сказать, по прямому назначению. В этом случае тепловая энергия, отобранная от стенок камеры, не теряется, а возвращается в камеру. Такое охлаждение (регенеративное) впервые было предложено еще К. Э. Циолковским и широко применяется в ракетной технике.

В большинстве современных ЖРД для подачи топлива используются специальные турбонасосные агрегаты. Чтобы привести в действие такой мощный насос, в особом газогенераторе сжигают топливо - обычно то же горючее и тот же окислитель, что и в камере сгорания двигателя. Иногда турбина насоса приводится во вращение паром, который образуется при охлаждении камеры сгорания двигателя. Есть и другие системы привода насоса.

Создание современных жидкостных ракетных двигателей требует высокого уровня развития науки и техники, совершенства конструкторской мысли, передовой технологии. Дело в том, что в ЖРД достигаются очень высокие температуры, развивается огромное давление, продукты сгорания, а порой и само топливо весьма агрессивны, расход топлива необычайно высок (до нескольких тонн в секунду!). При всем этом ЖРД должен иметь, особенно при запусках космических аппаратов с космонавтами на борту, очень высокую степень надежности. Именно высокая надежность и многие другие достоинства отличают жидкостные ракетные двигатели прославленной советской космической ракеты «Восток»-РД-107 (двигатель первой ступени) и РД-108 (двигатель второй ступени), разработанные в 1954- 1957 годах под руководством главного конструктора ракетных двигателей В. П. Глушко. Это первые в мире серийные двигатели, работающие на высококалорийном топливе; жидком кислороде и керосине. Они обладают высокой удельной тягой, что позволило получить огромные мощности при относительно умеренном расходе топлива. В пустоте тяга одного двигателя РД-107 составляет 102 тонны. (На первой ступени ракеты-носителя «Восток» установлено четыре таких двигателя.) Давление в камере сгорания - 60 атмосфер.

Двигатель РД-107 имеет турбонасосный агрегат с двумя основными центробежными насосами; один подает горючее, другой-окислитель. И горючее, и окислитель через большое количество форсунок подаются в четыре основные и две рулевые камеры сгорания. До попадания в камеры сгорания горючее обтекает их снаружи, т. е. используется для охлаждения. Надежное охлаждение позволяет поддерживать внутри камер сгорания высокую температуру. Качающиеся рулевые камеры сгорания, сходные по конструкции с основными, впервые применены в этом двигателе для управления направлением тяги.

Двигатель второй ступени ракеты «Восток» РД-108 имеет схожую конструкцию. Правда, у него четыре рулевые камеры и некоторые другие отличия. Его тяга в пустоте составляет 96 тонн. Интересно, что он запускается на Земле одновременно с двигателями первой ступени. Двигатели РД-107 и РД-108 различных модификаций уже много лет используются для запусков космических кораблей, искусственных спутников Земли, космических аппаратов к Луне, Венере и Марсу.

На второй ступени двухступенчатой ракеты-носителя «Космос» устанавливается разработанный в 1958-1962 годах (также в ГДЛ-ОКБ) жидкостной ракетный двигатель РД-119, имеющий тягу 11 тонн; Горючее этого двигателя-несимметричный диметилгидразин, окислитель - жидкий кислород. В его конструкции широко использован титан и другие современные конструкционные материалы. Наряду с высокой надежностью отличительная особенность этого двигателя - очень высокая экономичность, В 1965 году в нашей стране были созданы мощные малогабаритные двигатели с очень высокими энергетическими характеристиками для ракетно-космической системы «Протон». Суммарная полезная мощность двигательных установок ракеты «Протон» в три раза больше мощности двигателей ракеты «Восток» и составляет 60 миллионов лошадиных сил. В этих двигателях обеспечена высокая полнота сгорания, значительное давление в системе, равномерное и равновесное истечение продуктов сгорания из сопел.

В настоящее время ЖРД достигли высокой степени совершенства и их развитие продолжается, Созданы ЖРД самых различных классов - от микроракетных двигателей для систем ориентации и стабилизации летательных аппаратов с совсем небольшой тягой (в несколько килограммов и меньше) до огромных мощных ракетных двигателей, имеющих тягу сотни тонн (например, американский ЖРД Г-1 для первой ступени ракеты-носителя «Сатурн-5» имеет тягу 690 тонн. На ракете установлено пять таких двигателей).

Разрабатываются ЖРД на высокоэффективных топливах - смеси жидкого водорода (горючее) и жидкого кислорода или жидкого фтора в качестве окислителей. Созданы двигатели на долгохранимом топливе, которые могут работать при длительных космических полетах.

Существуют проекты комбинированных ракетных двигателей - турборакетных и ракетно-прямоточных, которые должны быть органическим сочетанием жидкостных ракетных двигателей с воздушно-реактивными. Создание таких двигателей позволяет использовать на начальном и завершающем этапах космического полета кислород воздуха в качестве окислителя и тем самым снизить запас топлива на борту ракеты. Ведутся также работы над созданием первых ступеней многократного использования. Такие ступени, оснащенные воздушно-реактивными двигателями и способные взлетать, а после отделения последующих ступеней совершать посадку подобно самолетам, позволят снизить стоимость запуска космических аппаратов.

ЯДЕРНЫЕ РАКЕТНЫЕ ДВИГАТЕЛИ

Учеными и конструкторами созданы термохимические двигатели высокой степени совершенства и, нет сомнения, будут созданы еще более совершенные образцы. Однако возможности термохимических ракет ограничены самой природой горючего, окислителя, продуктов реакции. При ограниченной энергопроизводительности ракетных топлив, не позволяющей получить очень большую скорость истечения рабочего тела из сопла, требуется огромный запас топлива, чтобы разогнать ракету до необходимой скорости. Химические ракеты необычайно прожорливы. Это вопрос не только экономии, но порой и самой возможное! и космического полета.

Даже для решения сравнительно более простой задачи из области космических полетов - запуска искусственных спутников Земли стартовая масса химической ракеты из-за огромного количества топлива должна во много десятков раз превышать массу груза, выведенного на орбиту. Для достижения второй космической скорости это соотношение еще больше. А ведь человечество начинает обживать космос, люди собираются строить научные станции на Луне, стремятся на Марс и Венеру, подумывают о полетах к далеким окраинам Солнечной системы. Ракетам завтрашнего дня предстоит перевозить в космосе многие тонны научного снаряжения и грузов.

Для межпланетных полетов нужно еще топливо, чтобы корректировать орбиту полета, тормозить космический корабль перед посадкой на планету-цель, взлетать для возвращения на Землю и т. д. Стартовая масса термохимических ракет для таких перелетов становится невероятно большой-несколько миллионов тонн!

Ученые и инженеры уже давно задумываются над тем, какими же должны быть ракетные двигатели будущего? Взоры ученых, естественно, обратились к ядерной энергии. В крохотном количестве ядерного горючего содержится очень большой запас энергии. При реакции деления ядер на единицу массы выделяется в миллионы раз больше энергии, чем при сжигании лучших химических топлив. Так, например, 1 килограмм урана при реакции деления может выделить столько же энергии, сколько 1700 тонн бензина при сжигании. Реакция ядерного синтеза дает энергии еще в несколько раз больше.

Использование ядерной энергии позволяет резко снизить запас топлива на борту ракеты, но остается потребность в рабочем веществе, которое будет нагреваться в реакторе и выбрасываться из сопла двигателя. При ближайшем рассмотрении оказывается, что разделение топлива и рабочего вещества в ядерной ракете таит в себе определенные преимущества.

Выбор рабочего вещества для химической ракеты весьма ограничен. Ведь оно служит и топливом. Вот тут-то и сказывается преимущество разделения топлива и рабочего вещества. Появляется возможность применить рабочее вещество с наименьшим молекулярным весом-водород.

В химической ракете тоже используется сочетание относительно высокой энергопроизводительности водорода с малым молекулярным весом. Но там рабочим веществом является продукт сгорания водорода с молекулярным весом 18. А молекулярный вес чистого водорода, который может служить рабочим телом ядерного ракетного двигателя, - 2. Уменьшение же молекулярного веса рабочего вещества в 9 раз при неизменной температуре позволяет увеличить скорость истечения в 3 раза. Вот оно, ощутимое преимущество, атомного ракетного двигателя!

Речь идет об атомных ракетных двигателях, использующих энергию деления ядер тяжелых элементов. Реакция ядерного синтеза искусственно пока осуществлена только в водородной бомбе, а управляемая термоядерная реакция синтеза все еще остается мечтой, несмотря на интенсивную работу многих ученых мира.

Итак, в атомном ракетном двигателе можно получить значительное увеличение скорости истечения газов благодаря применению рабочего вещества с минимальным молекулярным весом. Теоретически можно получить и очень большую температуру рабочего вещества. Но на практике она ограничивается температурой плавления тепловыделяющих элементов реактора.

В большинстве предложенных схем атомных ракетных двигателей рабочее тело нагревается, омывая тепловыделяющие элементы реактора, затем расширяется в сопле и выбрасывается из двигателя. Температура примерно та же, что и в химических ЖРД. Правда, сам двигатель получается гораздо более сложным и тяжелым. Особенно если учесть необходимость экрана для защиты космонавтов от радиации на пилотируемых космических кораблях. И все же атомная ракета сулит немалый выигрыш.

В США по так называемой программе «Ровер» ведутся усиленные работы по созданию атомного ракетного двигателя. Возникли и проекты ядерных ракетных двигателей, в которых активная зона находится в пылеобразной, жидкой или даже газообразной фазе. Это делает возможным получение более высокой температуры рабочего вещества. Использование таких реакторов (их называют полостными), вероятно, позволило бы намного увеличить скорость истечения рабочего тела. Но создание таких реакторов - дело чрезвычайно сложное: ядерное горючее здесь перемешано с рабочим веществом, и надо как-то отделить его перед выбросом рабочего тела из сопла двигателя. Иначе возникнут непрерывные потери ядерного топлива, за ракетой протянется смертельный шлейф высокой радиации. Да и критическая масса ядерного горючего, необходимая для поддержания реакций, при газообразном состоянии будет занимать очень большой объем, не приемлемый для ракеты.
(Л. А. Гильберг: Покорение неба)

«Буран», как и его заокеанский собрат - ракетная система многоразового пользования «Шаттл», по своим характеристикам оставляет желать лучшего.

Они оказались не настолько уж многоразовыми Стартовые ускорители выдерживают всею 3 4 полета, а сам крылатый аппарат обгорает и требует весьма дорогостоящего ремонта. Но главное - КПД их не велик.

А тут такой соблазн - создать пилотируемый крылатый аппарат, способный самостоятельно стартовать с Земли, выходить в космическое пространство и возвращаться обратно. Правда, нерешенной пока остается главная проблема - двигатель. Воздушно-реактивные двигатели (ВРД) известных типов способны работать только до скорости 4-5 М (М – скорость звука), а первая космическая скорость, как известно, 24 М. Но и тут, кажется, уже наметились первые шаги к успеху.

На выставке «Авиадвигателе-строение-92», проходившей в Москве, среди всевозможных экспонатов - от древних паровых машин для дирижаблей до гигантских турбин суперсовременных транспортных самолетов - на стенде скромно стоял небольшой бочонок - первая и единственная в мире модель гиперзвукового (Гиперзвук – от 6М и выше) воздушно-реактивного двигателя (ГПВРД). Создали его в Центральном институте авиационного моторостроения (ЦИАМ). Разумеется, это результат работы большого коллектива. Прежде всего главного конструктора Д. А. Огородникова, его соратников А. С. Рудакова, В. А. Виноградова... Право, не следует забывать и тех, кого уже нет в живых - это доктор технических наук Р. И. Курзинер и профессор Е. С. Щетинков. Последний еще несколько десятилетий назад предложил основной принцип, лежащий в основе всех современных ГПВРД Разработанный им двигатель уже в то время был способен работать на гиперзвуковых (выше 5-6 М) скоростях. Эти люди и создали чудо техники, которое, быть может, в ближайшем будущем совершит революцию в космическом двигателестроении.

Но давайте не спешить «прилаживать» новый двигатель к космическому самолету, будь то «Буран» или «Спираль», обратимся к теории. Дело в том, что каждый двигатель может работать лишь в определенном, слишком узком для космических задач диапазоне скорое гей, и заставить его освоить гиперзвук далеко не просто. Разберемся почему.

В любом ВРД для успешной работы должны быть соблюдены три важнейших условия. Прежде всего необходимо сжать воздух как можно сильнее. Затем в камере сгорания сжечь без потерь топливо. И, наконец, с помощью сопла продукты сгорания должны расшириться до атмосферного давления. Только тогда КПД будет достаточно высок.

Посмотрите на рисунок. Перед вами схема первого в мире гиперзвукового прямоточного реактивного двигателя (ГПВРД). Свою первую задачу - сжатие воздуха - он решает весьма оригинально - по принципу... колуна. Представьте себе: колун врезается в мягкое плотное полено, слои дерева впереди него остаются без изменений, а по бокам уплотняются. Границу между нормальными и более плотными слоями ученые называют «скачком уплотнения». Так происходит и в двигателе. Вдоль его оси расположено заостренно центральное тело. Врезаясь в воздух, оно и создает такой «скачок» - зону повышенного давления. Происходит «отражение» воздуха от центрального тела к стенкам корпуса. При этом он многократно дополнительно сжимается. Скорость воздуха снижается, а температура растет, кинетическая энергия превращается во внутреннюю, тепловую.

Теперь, чтобы впрыснутое в поток топливо полностью сгорело, желательно получить скорость как можно меньше. Но тогда температура воздуха может достичь 3-5 тыс. градусов. Казалось бы, хорошо - топливо вспыхнет как порох. Но окажись тут даже настоящий порох, вспышки не получится. Все дело в том, что при столь высоких температурах наряду с процессом окисления происходит и распад молекул на отдельные атомы. Если в первом энергия выделяется, то во втором - поглощается. И парадокс - с ростом температуры может наступить такой момент, когда поглощаться станет больше, чем выделяться. Иными словами - топка превратится в... холодильник.

Оригинальный выход из положения еще в 1956 году подсказал профессор Щетинков. Он предложил сжимать воздух лишь до тех пор, пока его сверхзвуковая скорость не станет примерно такой, как у... пули. Как теперь признано во всем мире, только при этих условиях возможна работа ГПВРД.

Но и тут свои трудности: даже смесь водорода с воздухом, известная нам по курсу химии под названием «гремучий газ», в таких условиях едва успеет загореться. И хоть топливом для двигателя выбрали жидкий водород, пришлось прибегнуть к хитростям. Вначале водород охлаждает стенки. Сам нагреваясь от -256° С до +700° С, он спасает металл от расплавления. Часть топлива впрыскивается через форсунки прямо в поток воздуха. А другая часть попадает на форсунки, расположенные в специальных прямоугольных нишах. Здесь горят мощные водородные факелы, способные мгновенно прожечь лист стали. Они-то и поджигают водородо-воздушную смесь. Ту самую, которая в обычных условиях взрывается от искры, оброненной с нейлоновой рубашки.

А вот, пожалуй, главная задача, на которую мы и американцы потратили около 30 лет. Как получить полное сгорание, имея камеру приемлемой длины - в 3-5 м? Известно, что теория без проверочного эксперимента стоит немного. А чтобы проверить работу такого двигателя, его надо поместить в гиперзвуковой поток. Самолетов таких нет, правда, имеются аэродинамические трубы, но стоят они очень и очень дорого. Для окончательной проверки ГПВРД конструкторы установили свое устройство в носовой части ракеты и разогнали до нужной скорости.

Уточним, что речь здесь шла не о создании ракеты нового типа, а лишь о проверке качества сгорания водорода в двигателе. Она увенчалась полным успехом. Теперь, как признают американцы, наши ученые владеют секретом создания надежных камер сгорания.

Ну а теперь давайте подумаем, что получится, если мы захотим эту маленькую выставочную модель увеличить, сделав пригодной для подъема в воздух самолета. По всей видимости, она обретет черты тяжеленной тридцатиметровой трубы с громадным диффузором и соплом и весьма скромной камерой сгорания. А кому такой двигатель нужен? Тупик? Нет, выход есть и давно известен. Многие функции в его работе можно возложить на... фюзеляж и крыло самолета!

Прототип такого воздушно-космического самолета (ВКС) показан на рисунке. «Вклиниваясь» своею носовой частью в воздух, он создает серию скачков уплотнения, и все они прямехонько попадают на вход камеры сгорания. Выходящие из нее раскаленные газы, расширяясь до атмосферного давления, скользят по поверхности кормовой части самолета, создавая тягу, как в хорошем сопле. На гиперзвуковых скоростях и такое возможно! Удивительно, но теоретически можно обойтись даже без камеры, а «просто» впрыскивать топливо вблизи выступа на брюхе ВКС! Получится двигатель, которого вроде бы и нет. Он называется ГПВРД «внешнего горения». Правда, его «простота» в исследовательской работе стоит настолько дорого, что пока никто им серьезно не занимался.

А потому вернемся к воздушно-космическому самолету с ГПВРД классического типа. Его старт и разгон до б М должен происходить при помощи обычных турбореактивных двигателей. На рисунке вы видите агрегат, состоящий из традиционного турбореактивного двигателя и расположенного рядом ГПВРД. На «малых» скоростях ГПВРД отделяется обтекаемой перегородкой и не мешает полету.

А на больших - перегородка перекрывает поток воздуха, идущий в ТРД, и включается ГПВРД.

Вначале все пойдет хорошо, но затем, по мере роста скорости, тяга двигателя начнет падать, а аппетиты - расход топлива - расти. В этот момент его ненасытное чрево надо подкармливать жидким кислородом. Хочешь, не хочешь, а брать его с собой все же придется. Правда, в количествах много меньших, чем на обычной ракете. Где-то километрах в 60 от Земли ГПВРД заглохнет от недостатка воздуха. И тут вступит в действие небольшой жидкостный ракетный двигатель. Скорость уже высок, и топлива с окислителем о «съест» до выхода на орбит совсем немного. При равном ракетой стартовом весе воздушно-космический самолет выведен на орбиту в 5-10 раз больший полезный груз. А стоимость вывода каждого килограмма окажется в десятки раз ниже, чем ракет. Это как раз то, чего добиваются ученые и конструкторы сегодня.

Недавно случившаяся авария ракеты« Днепр», космического носителя, переделанного из военной ракеты Р-36М УТТХ, снова вызвала интерес к ракетному топливу.

V-2 («Фау-2») легла в основу всей послевоенной ракетной техники, и американской, и советской

Запуск 900 ракет «Фау-2» требовал 12 тыс. т жидкого кислорода, 4 тыс. тонн этилового спирта, 2 тыс. т метанола, 500 т перекиси водорода и 1,5 тыс. т взрывчатки

Вместо спирта, который наряду с жидким кислородом использовал Вернер фон Браун, Королев для своих первых ракет выбрал керосин

Ни бензин, не керосин, ни дизельное топливо не воспламеняются сами при взаимодействии с кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу

Ракета S-4B, третья ступень еще одного детища Вернера фон Брауна — самой мощной американской ракеты-носителя Saturn V. В активе последней — 13 успешных запусков (с 1967 по 1973 год). Именно с ее помощью человек ступил на Луну

Жидкостные ракетные двигатели (ЖРД) — очень совершенные машины, и их характеристики на 90%, а то и больше, определяются примененным топливом. Эффективность же топлива зависит от состава и запасенной энергии. Идеальное топливо должно состоять из легких элементов — из самого начала таблицы Менделеева, дающих максимальную энергию при окислении. Но это не все требования к топливу — еще оно должно быть совместимым с конструкционными материалами, стабильным при хранении и по возможности недорогим. Но ракета — это не только двигатель, но еще и баки ограниченного объема: чтобы взять на борт больше топлива, его плотность должна быть повыше. Кроме топлива ракета везет с собой и окислитель.

Идеальный окислитель с точки зрения химии — жидкий кислород. Но одной химией ракета не исчерпывается, это конструкция, в которой все взаимоувязано. Вернер фон Браун выбрал для Фау-2 спирт и жидкий кислород, и дальность ракеты получилась 270 км. Но если бы ее двигатель работал на азотной кислоте и дизельном топливе, то дальность увеличилась бы на четверть, потому что такого топлива в те же баки помещается на две тонны больше!

Ракетное топливо — кладовая химической энергии в компактном виде. Топливо тем лучше, чем больше энергии запасает. Поэтому вещества, хорошие для ракетного топлива, всегда чрезвычайно химически активны, непрерывно пытаются высвободить скрытую энергию, разъедая, сжигая и разрушая все вокруг. Все ракетные окислители либо взрывоопасны, либо ядовиты, либо нестойки. Жидкий кислород — единственное исключение, и то только потому, что природа приучилась к 20% свободного кислорода в атмосфере. Но даже жидкий кислород требует уважения.

Хранить вечно

Баллистические ракеты Р-1, Р-2 и Р-5, созданные под руководством Сергея Королева, не только показали перспективность этого вида оружия, но и дали понять, что жидкий кислород не очень подходит для боевых ракет. Несмотря на то, что Р-5М была первой ракетой с ядерной боеголовкой, а в 1955 году даже было произведено реальное испытание с подрывом ядерного заряда, военных не устраивало, что ракету нужно заправлять непосредственно перед стартом. Требовалась замена жидкому кислороду, замена полноценная, такая, чтоб и в сибирские морозы не замерзала, и в каракумскую жару не выкипала: то есть с диапазоном температур от -55 градусов до +55 градусов Цельсия. Правда, с кипением в баках проблем не ожидалось, так как давление в баке повышенное, а при повышенном давлении и температура кипения больше. Но кислород ни при каком давлении не будет жидким при температуре выше критической, то есть -113 градусов Цельсия. А таких морозов даже в Антарктиде не бывает.

Азотная кислота HNO3 — другой очевидный окислитель для ЖРД, и ее использование в ракетной технике шло параллельно с жидким кислородом. Соли азотной кислоты — нитраты, особенно калийная селитра — уже много веков использовались как окислитель самого первого ракетного топлива — черного пороха.

Молекула азотной кислоты содержит как балласт лишь один атом азота да «половинку» молекулы воды, а два с половиной атома кислорода могут быть использованы для окисления горючего. Но азотная кислота — очень «хитрое» вещество, настолько странное, что непрерывно реагирует само с собой — атомы водорода от одной молекулы кислоты отщепляются и прицепляются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Из-за этого в азотной кислоте обязательно образуются разного рода примеси.

Кроме того, азотная кислота очевидно не удовлетворяет требованиям совместимости с конструкционными материалами — под нее специально приходится подбирать металл для баков, труб, камер ЖРД. Тем не менее «азотка» стала популярным окислителем еще в 1930-е годы — она дешева, производится в больших количествах, достаточно стабильна, чтобы ею можно было охлаждать камеру двигателя, пожаро- и взрывобезопасна. Плотность ее заметно больше, чем у жидкого кислорода, но главное ее достоинство по сравнению с жидким кислородом состоит в том, что она не выкипает, не требует теплоизоляции, может неограниченно долго храниться в подходящей таре. Только где ее взять, подходящую тару?

Все 1930-е и 1940-е годы прошли под знаменем поиска подходящих емкостей для азотной кислоты. Но даже самые стойкие сорта нержавеющей стали медленно разрушались концентрированной азоткой, в результате на дне бака образовывался густой зеленоватый «кисель», смесь солей металлов, который, конечно же, нельзя подавать в ракетный двигатель — он мгновенно забьется и взорвется.

Для уменьшения коррозионной активности азотной кислоты в нее стали добавлять различные вещества, пытаясь, зачастую методом проб и ошибок, найти комбинацию, которая бы, с одной стороны, не испортила окислитель, с другой — сделала его более удобным в использовании. Но удачная добавка была найдена только в конце 1950-х американскими химиками — оказалось, что всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз! Советские химики задержались с этим открытием лет на десять-пятнадцать.

Секретные присадки

Тем не менее первый в СССР ракетный самолет-перехватчик БИ-1 использовал именно азотную кислоту и керосин. Баки и трубы пришлось делать из монель-металла — сплава никеля и меди. Этот сплав получался «естественным» образом из некоторых полиметаллических руд, поэтому был популярным конструкционным материалом второй трети ХХ века. О его внешнем виде можно судить по металлическим рублям — они сделаны из почти «ракетного» сплава. Во время войны не хватало, однако, не только меди с никелем, но и нержавеющей стали. Приходилось использовать обычную, покрытую для защиты хромом. Но тонкий слой быстро проедался кислотой, поэтому после каждого запуска двигателя остатки топливной смеси приходилось скребками удалять из камеры сгорания — техники поневоле вдыхали ядовитые испарения. Один из пионеров ракетной техники Борис Черток однажды едва не погиб при взрыве двигателя для БИ-1 на стенде, этот эпизод он описал в своей замечательной книге «Ракеты и люди».

Помимо добавок, снижающих агрессивность азотной кислоты, в нее пытались добавлять разные вещества, чтобы повысить ее эффективность как окислителя. Наиболее результативным веществом была двуокись азота, еще одно «странное» соединение. Обычно — газ бурого цвета, с резким неприятным запахом, но стоит его слегка охладить, он сжижается и две молекулы двуокиси склеиваются в одну. Поэтому соединение часто называют четырехокисью азота, или азотным тетраоксидом — АТ. При атмосферном давлении АТ кипит при комнатной температуре (+21 градус), а при -11 градусах замерзает. Чем ближе к точке замерзания, тем бледнее цвет соединения, становящегося под конец бледно-желтым, а в твердом состоянии — почти бесцветным. Это оттого, что газ состоит в основном из молекул NO2, жидкость — из смеси NO2 и димеров N2O4, а в твердом веществе остаются одни только бесцветные димеры.

Добавка АТ в азотную кислоту увеличивает эффективность окислителя сразу по многим причинам — АТ содержит меньше «балласта», связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты. Самое интересное, что с растворением АТ в АК плотность раствора сначала растет и достигает максимума при 14% растворенного АТ. Именно этот вариант состава и выбрали американские ракетчики для своих боевых ракет. Наши же стремились повысить характеристики двигателей любой ценой, поэтому в окислителях АК-20 и АК-27 было по 20% и 27% соответственно растворенного азотного тетраоксида. Первый окислитель использовался в зенитных ракетах, а второй — в баллистических. КБ Янгеля создало ракету средней дальности Р-12, которая использовала АК-27 и специальный сорт керосина ТМ-185.

Зажигалки

Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Военных больше всего устраивал бы продукт перегонки нефти, но и другие вещества, если они производились в достаточных количествах и стоили недорого, тоже можно было использовать. Проблема была одна — ни бензин, ни керосин, ни дизельное топливо не воспламеняются сами при контакте с азотной кислотой, а для военных ракет самовоспламенение — одно из ключевых требований к топливу. Хотя наша первая межконтинентальная ракета Р-7 использовала пару «керосин — жидкий кислород», стало ясно, что пиротехническое зажигание неудобно для боевых ракет. При подготовке ракеты к пуску требовалось вручную вставить в каждое сопло (а их у Р-7 ни много ни мало 32−20 основных камер и 12 рулевых) деревянную крестовину с зажигательной шашкой, подключить все электропровода, которыми шашки воспламеняются, и проделать еще много разных подготовительных операций.

В Р-12 эти недостатки были учтены, и зажигание обеспечивалось пусковым горючим, которое самовоспламенялось при контакте с азотной кислотой. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно «Тонка-250». Наши ракетчики переименовали его в соответствии с ГОСТами в ТГ-02. Теперь ракета могла стоять заправленной несколько недель, и это был большой успех, так как ее можно было бы запустить в течение пары часов вместо трех суток для Р-7. Но три компонента — много для боевой ракеты, а для использования в качестве основного горючего ТГ-02 годился только для зенитных ракет; для баллистических ракет дальнего действия нужно было что-то более эффективное.

Гиперголики

Химики назвали пары веществ, самовоспламеняющихся при контакте, «гиперголическими», то есть, в приблизительном переводе с греческого, имеющими чрезмерное сродство друг с другом. Они знали, что лучше всего воспламеняются с азотной кислотой вещества, имеющие в составе, кроме углерода и водорода, азот. Но «лучше» — это насколько?

Задержка самовоспламенения — ключевое свойство для пар химических веществ, которые мы хотим сжечь в ракетном двигателе. Представьте — включили подачу, горючее и окислитель накапливаются в камере, а воспламенения нет! Зато, когда оно наконец происходит, мощный взрыв разносит камеру ЖРД на кусочки. Для определения задержки самовоспламенения разные исследователи строили самые разные по сложности стенды — от двух пипеток, синхронно выдавливающих по капельке окислителя и горючего, до маленьких ракетных двигателей без сопла — форсуночная головка и короткая цилиндрическая труба. Все равно взрывы раздавались очень часто, действуя на нервы, выбивая стекла и повреждая датчики.

Очень быстро был обнаружен «идеальный гиперголь» — гидразин, старый знакомый химиков. Это вещество, имеющее формулу N2H4, по физическим свойствам очень похоже на воду — плотность на несколько процентов больше, температура замерзания +1,5 градуса, кипения +113 градусов, вязкость и все прочее — как у воды, но вот запах…

Гидразин был получен впервые в чистом виде в конце XIX века, а в составе ракетного топлива впервые употреблен немцами в 1933 году, но в качестве сравнительно небольшой добавки для самовоспламенения. Как самостоятельное горючее гидразин был дорог, производство его недостаточно, но, главное, военных не устраивала его температура замерзания — выше, чем у воды! Нужен был «гидразиновый антифриз», и его поиски шли непрерывно. Уж очень гидразин хорош! Вернер фон Браун для запуска первого спутника США «Эксплорер» заменил спирт в ракете «Редстоун» на «гидин» (Hydyne), смесь 60% гидразина и 40% спирта. Такое горючее улучшило энергетику первой ступени, но для достижения необходимых характеристик пришлось удлинить баки.

Гидразин, как и аммиак NH3, состоит только из азота и водорода. Но если при образовании аммиака из элементов энергия выделяется, то при образовании гидразина энергия поглощается — именно поэтому прямой синтез гидразина невозможен. Зато поглощенная при образовании энергия выделится потом при сгорании гидразина в ЖРД и пойдет на повышение удельного импульса — главного показателя совершенства двигателя. Пара кислород-керосин позволяет получить удельную тягу для двигателей первой ступени в районе 300 секунд. Замена жидкого кислорода на азотную кислоту ухудшает эту величину до 220 секунд. Такое ухудшение требует увеличения стартовой массы почти в два раза. Если же заменить керосин гидразином, большую часть этого ухудшения можно «отыграть». Но военным было нужно, чтобы горючее не замерзало, и они требовали альтернативу.

Пути разошлись

И тут пути наших и американских химиков разошлись! В СССР химики придумали способ получения несимметричного диметилгидразина, а американцы предпочли более простой процесс, в котором получался монометилгидразин. Обе эти жидкости, несмотря на их чрезвычайную ядовитость, устраивали и конструкторов, и военных. К аккуратности при обращении с опасными веществами ракетчикам было не привыкать, но все же новые вещества были настолько токсичными, что обычный противогаз не справлялся с очисткой воздуха от их паров! Нужно было либо использовать изолирующий противогаз, либо специальный патрон, который окислял токсичные пары до безопасного состояния. Зато метилированные производные гидразина были менее взрывоопасными, меньше впитывали водяные пары, были термически более стойкими. Но вот температура кипения и плотность по сравнению с гидразином понизились.

Поэтому поиски продолжались. Американцы одно время очень широко использовали «Аэрозин-50» — смесь гидразина и НДМГ, что было следствием изобретения технологического процесса, в котором они получались одновременно. Позднее этот способ был вытеснен более совершенными, но «Аэрозин-50» успел распространиться, и на нем летали и баллистические ракеты «Титан-2», и корабль «Аполлон». Ракета «Сатурн-5» разгоняла его к Луне на жидком водороде и кислороде, но собственный двигатель «Аполлона», которому нужно было включаться несколько раз в течение недельного полета, должен был использовать самовоспламеняющееся долгохранимое топливо.

Тепличные условия

Но дальше с баллистическими ракетами произошла удивительная метаморфоза — они спрятались в шахты, для защиты от первого удара противника. При этом уже не требовалось морозостойкости, так как в шахте воздух подогревался зимой и охлаждался летом! Топливо можно было подбирать, не учитывая его морозоустойчивости. И сразу же двигателисты отказались от азотной кислоты, перейдя на чистый азотный тетраоксид. Тот самый, что кипит при комнатной температуре! Ведь давление в баке повышенное, а при повышенном давлении и температура кипения нас беспокоит гораздо меньше. Зато теперь коррозия баков и трубопроводов уменьшилась настолько, что стало возможным хранить ракету заправленной на протяжении всего срока боевого дежурства! Первой ракетой, которая могла стоять заправленной 10 лет подряд, стала УР-100 конструкции КБ Челомея. Почти одновременно с ней появилась гораздо более тяжелая Р-36 фирмы Янгеля. Нынешний ее потомок, последняя модификация Р-36М2, кроме баков, мало имеет общего с первоначальной ракетой.

По энергетическим характеристикам пары «кислород — керосин» и «четырехокись азота — НДМГ» очень близки. Но первая пара хороша для космических ракет-носителей, а вторая — для МБР шахтного базирования. Для работы с такими ядовитыми веществами была разработана специальная технология — ампулизация ракеты после заправки. Смысл ее понятен из названия: все магистрали перекрываются необратимо, чтобы избежать даже малейших утечек. Впервые она была применена на ракетах для подводных лодок, которые тоже использовали такое топливо.

Твердое топливо

Американские же ракетчики для боевых ракет предпочли твердое топливо. Оно имело несколько худшие характеристики, зато ракета требовала гораздо меньше подготовительных операций при запуске. Наши тоже пытались использовать твердотопливные ракеты, но последнюю ступень все равно приходилось делать жидкостной, для того чтобы скомпенсировать разброс работы твердотопливных двигателей, которые невозможно регулировать так, как жидкостные. А позднее, когда появились ракеты с несколькими боеголовками, на последнюю жидкостную ступень легла задача «разведения» их по целям. Так что пара «АТ-НДМГ» без работы не осталась. Не остается и сейчас: на этом топливе работают двигатели космического корабля «Союз», Международной космической станции и многих других аппаратов.