Проект по огнезащитной обработке деревянных конструкций. Огнезащита стальных несущих конструкций

ТУ 2316-001-90604434-11

ООО «ХимПарк Норд»

г. Москва

ТУ 2316-004-90604434-11

ООО «ХимПарк Норд»

г. Москва

3-ая группа огнезащитной эффективности при толщине 1,5 мм

ТУ 2310-005-90604434-11

ООО «ХимПарк Норд»

г. Москва

2-ая группа огнезащитной эффективности для дерева с расходом 160 г/м 2

ТУ 2300-010-90604434-11

ООО «ХимПарк Норд»

г. Москва

3-ая группа огнезащитной эффективности при толщине 1,5 мм

ТУ 2257-002-90604434-11

ООО «ХимПарк Норд»

г. Москва

2-ая группа огнезащитной эффективности при толщине 1,5 мм

ТУ 5767-003-90604434-11

ООО «ХимПарк Норд»

г. Москва

1-ая группа огнезащитной эффективности

ТУ 5767-005-90604434-2011

ООО «ХимПарк Норд»

г. Москва

1-ая группа огнезащитной эффективности при толщине 48 мм

ТУ 2313-008-90604434-2011

ООО «ХимПарк Норд»

г. Москва

Грунт адгезив влагостойкая расход 160 г/м 2

«Уникум»

ТУ 2316-027-40366225-01

НПО «Ассоциация Крилак»

г. Москва

4-ая группа огнезащитной эффективности при толщине 1,3 мм

«Джокер»

ТУ 2316-043-40366225-02

НПО «Ассоциация Крилак»

г. Москва

3-я группа огнезащитной эффективности при толщине 1,66 мм

«Файэфлекс™ Крилак»

ТУ 2317-019-40366225-00

НПО «Ассоциация Крилак»

г. Москва

4-ая группа огнезащитной эффективности при толщине 1,5 мм

Покрытие

«Файрекс-400»

ТУ 2316-004-40366225-98

НПО «Ассоциация Крилак»

г. Москва

3-я группа огнезащитной эффективности при толщине 11,50 мм

«Антигор»

ТУ 7719-164-1800000335-96

ЗАО НПП «Спецэнерготех-ника»

3-я группа огнезащитной эффективности при толщине 8,4 мм

ТУ 7719-171-21366107-02

ЗАО НПП «Спецэнерготех-ника»

3-я группа огнезащитной эффективности при толщине 3 мм

«Триумф»

ТУ 7719-172-21366107-02

ЗАО НПП «Спецэнерготех-ника»

3-я группа огнезащитной эффективности при толщине 6 мм

Огракс-В-СК

ТУ 5728-021-13267785-00

УНИХИМТЕК

г. Москва

ТУ 2316-008-17297211-01

ООО «НПЛ 38080»

г. Москва

4-я группа огнезащитной эффективности при толщине 1,0 мм

«SIGNULAN HOECO»

сухая смесь

сухая смесь

1-ая группа огнезащитной эффективности при толщине 60 мм

«HENSOTERM 4KS»

4-ая четвертая группа огнезащитной эффективности при толщине 1,30 мм

«PROTERM STEEL»

ТУ 2316-001-20942052-00

ООО «А+В»

по лицензии

«ITALVIS PROTECT S.r.l»

4-ая группа огнезащитной эффективности при толщине 1,20 мм

Германия

4-ая группа огнезащитной эффективности при толщине 1,00 мм

«НУЛИФАЙЕР S-607»

«Nullifire Limited»

3-я группа огнезащитной эффективности при толщине 2,07 мм

«Сиофарб М»

4-ая группа огнезащитной эффективности при толщине 5,94 мм

Способы определения предела огнестойкости металлоконструкций

Для определения огнестойкости несущих и ограждающих металлических конструкций используются методики согласно ГОСТ 30247.1 - 94. Он предназначается и для [Л.6]:

Колонн и столбов;
балок, ригелей, элементов арок и рам, а также других несущих и ограждающих конструкций.

Сущность метода заключается в определении, в соответствии с настоящими нормами, огнезащитной эффективности покрытия при тепловом воздействии на опытный образец и определения времени от начала теплового воздействия до наступления предельного состояния этого образца. За предельное состояние принимается время достижения температуры 500°С стали опытных образцов (средняя температура по трем ТЭП).

Должны использоваться стальные колонны двутаврового сечения профиля 20 по ГОСТ 8239 или профиля 20Б1 по ГОСТ 26020. Высота образца (1700±10) мм.

Приведенная толщина металла стальной колонны определяется непосредственно перед каждым испытанием.

Огнезащитные составы наносятся на образцы в соответствии с технической документацией (зачистка поверхности стальных образцов тип грунтовки, количество и толщина нанесенного слоя и т.д.) в присутствии специалистов, проводящих испытания.

Влажность покрытия должна быть динамически уравновешенной с окружающей средой при температуре (20±10)°С.




изменение температуры металла опытного образца.

Испытания проводятся без статической нагрузки при четырехстороннем тепловом воздействии до наступления предельного состояния опытного образца.

За результат одного испытания принимается время (в минутах) достижения предельного состояния опытного образца.

Контрольный метод испытания огнезащитных составов используются при контроле огнезащитной эффективности огнезащитных составов при их производстве, а также при поставках крупных партий огнезащитных покрытий.

Сущность метода заключается в тепловом воздействии на опытный образец и определении времени от начала теплового воздействия до наступления предельного состояния опытного образца.

Необогреваемая поверхность опытного образца должна быть теплоизолирована материалом с величиной термического сопротивления не менее 1,9 м 2-0 С/Вт и толщиной не менее 100 мм.

Состав, толщина и технология нанесения огнезащитного состава, а именно: способ нанесения (механизированный способ или вручную), качество стальной поверхности на которую наносится покрытие (неокрашенная очищенная поверхность или поверхность, загрунтованная лакокрасочными покрытиями), должны быть идентичными составу, толщине и технологии нанесения, применявшимся при испытаниях по оценке огнезащитной эффективности покрытий для несущих стальных конструкций.

В процессе проведения испытаний регистрируются следующие показатели:

Время наступления предельного состояния;
изменение температуры в печи;
поведение огнезащитного покрытия (вспучивание, обугливание, отслоение, выделение дыма, продуктов горения и т.д.);
изменение температуры на необогреваемой поверхности опытного образца.
За предельное состояние принимается время достижения температуры 500°С стали опытных образцов (средняя температура по трем ТЭП).

Нанесение вспучивающихся покрытий

Работы по нанесению вспучивающихся составов на поверхность стальных конструкций включают следующие технологические операции: подготовку поверхности, приготовление рабочего состава покрытия, нанесение покрытия. Подготовка поверхности предусматривает очистку от грязи, ржавчины, окалины и старой краски, обезжиривание растворителями, нанесение грунтовок.

Нанесение тонкослойных неорганических вспучивающихся составов осуществляется методом безвоздушного напыления. К установкам такого относятся аппараты типа Wagner, Graco и др. с параметрами:

рабочее давление - 150 МПа;
диаметр сопла - 0,32 - 0,45 мм;
угол распыления - в зависимости от размеров обрабатываемого объекта.

При безвоздушном напылении огнезащитного состава сопло должно находиться на расстоянии 30-40 см от напыляемой поверхности под углом, близким к 900С. Оптимальный режим безвоздушного напыления создается при давлении 0,10 - 0,15 МПа.

Покрытие наносят послойно. Толщина слоя и время его сушки определяются свойствами материала.

Тепло-огнезащитные составы наносят на подготовленную поверхность методом полусухого торкретирования. Огнезащитные составы в этом случае поставляются на строительную площадку в виде готовой к применению сухой смеси. В качестве примера можно назвать установки УНОП - 1, JSO -140, KEMATEP - FSM , ЦПШК и др. [Л7]

При применении пушки ЦПШК - 1М давление на выходе водяного шланга 0,3 - 0,5 МПа, расстояние от сопла до защищаемой поверхности 0,6 - 0,5 м. Необходимое количество воды, вводимой в огнезащитную смесь через водяной штуцер сопла, определяют визуально по моменту образования глянцевой пленки на поверхности нанесенного слоя. Подача воды должна постоянно контролироваться, так как избыток воды неизбежно приведет к ухудшению адгезионной способности материала. Направление струи торкрета должно быть перпендикулярным к защищаемой поверхности.

В случае повышенных требований к адгезии целесообразно применение дополнительных клеящих составов, например, латекса: вначале напыляется грунтовочный слой толщиной 3-5 мм с применением вместо воды водного раствора синтетического латекса или ПВА в пропорции 1:40. Вторым основным слоем (без каких-либо добавок в воду) достигается суммарная толщина покрытия.

При требуемых толщинах огнезащитного покрытия свыше 20 мм необходимо применять армирование его слоя спиральной намоткой стеклобазальтоволокнистыми нитями или стальной проволокой толщиной около 1 мм с шагом 100 - 150 мм. Возможна также установка стальной (базальтоволокнистой) сетки с ячейками размером не более 100x100 мм и толщиной нити не менее 0,5 мм.

Огнезащитное покрытие на основе портландцемента после нанесения должно быть предохранено от высыхания в течение не менее 7 суток. С этой целью конструкцию с огнезащитой следует закрыть паронепроницаемым пленочным материалом. Огнезащитное покрытие, выполненное на основе гипса или жидкого стекла, после схватывания может быть подвергнуто как естественной, так и искусственной сушке. Искусственная сушка с использованием калориферов, инфракрасных излучателей или других тепловых приборов может применяться и для ускорения высыхания покрытий на основе портландцемента после выдержки их во влажных условиях в течение не менее 7 суток. Максимальная температура искусственной сушки, замеренная на расстоянии 1 см от поверхности покрытия, не должна превышать 100°С.

Для нанесения легких огнезащитных составов применяются машины типа «Putzmaster» [Л7] - шнекового типа. Сухой состав засыпается в смеситель и добавляется необходимое количество воды.

Поверхность защищаемой конструкции должна быть предварительно очищена и огрунтована. Оптимальная плотность наносимого состава ~700 кг/м 3 . Толщина одного слоя состава в мокром виде не должна превышать 13 мм.

Рабочее давление - 40 бар.
Производительность установки при толщине покрытия 4-5 мм - 18 м 2 /час.

Контроль качества огнезащитных покрытий

Согласно НПБ 232-96 «Порядок осуществления контроля за соблюдением требований нормативных документов на средства огнезащиты (разработка, применение и эксплуатация) п. 3.1, работа по контролю за соблюдением требований нормативных документов на средства огнезащиты на предприятиях и объектах строительства должна проводиться в том числе по следующим направлениям:

Контроль качества выпускаемых и применяемых средств огнезащиты и их соответствие требованиям нормативных документов;
проверка наличия состояние технического оборудования для приготовления огнезащитных составов.
проверка наличия на рабочих местах выписок из технологических карт по приготовлению и нанесению средств огнезащиты;
контроль состояния огнезащитных покрытий, нанесенных на защищаемые материалы и конструкции, по истечении различных сроков их эксплуатации.
проверка соответствия условий эксплуатации огнезащитных покрытий требованиям нормативных документов.

В целях определения качества производимых и применяемых средств огнезащиты проводятся контрольные испытания отобранных проб огнезащитных составов на соответствие требованиям нормативных документов (п. 3.2 НПБ 232-96). Испытания проводятся в аккредитованных в установленном порядке испытательных лабораториях (центрах).

В целях определения качества выполненной огнезащитной обработки металлоконструкций, защищенных огнезащитными средствами, проводится визуальный осмотр нанесенных огнезащитных покрытий для выявления необработанных мест, трещин отслоений, изменение цвета, повреждений, а также замер толщины нанесенного слоя. Внешний вид и толщина слоя огнезащитного покрытия, нанесенного на защищаемую поверхность, должны соответствовать требованиям нормативных документов на данные покрытия.

Требования нормативных документов на средства огнезащиты считаются несоблюдаемыми, если выпускаемая продукция, выполненные работы (оказанные услуги), режимы эксплуатации не соответствуют хотя бы одному из требований нормативных документов на средства огнезащиты.

Способы определения толщины огнезащитного покрытия для данного предела огнестойкости конкретной конструкции

Расчетный метод определения толщины огнезащитного покрытия

Для незащищенных металлических конструкций температура стали в процессе нагрева описывается уравнением: [Л3]

С ст - начальный коэффициент теплоемкости металла;
Д ст - коэффициент теплоемкости металла при нагреве;
t ст - температура стержня;
Δt - расчетный интервал времени;
δ пр - приведенная толщина металла;
ϒ ст - плотность стали.

В результате расчета оказывается, что температура незащищенных металлических конструкций в процессе нагрева зависит только от одного геометрического параметра - приведенной толщины металла δ пр. Это позволяет для каждого вида металла составить одну номограмму, с помощью которой можно определить температуру незащищенных конструкций любых сечений.

Зависимость предела огнестойкости статически определимых конструкций от приведенной толщины при условиях, вызываемых нормативной нагрузкой, выражается значениями, указанными в таблице. [Л3]

Таблица №1 (2)

Зависимость собственного предела огнестойкости
металлоконструкций от приведенной толщины металла

Промежуточное значение пределов огнестойкости определяются методом линейной интерполяции.

Толщину слоя огнезащитного покрытия для каждой конкретной конструкции можно получить двумя путями: расчетным и экспериментальным.

Экспериментальный метод расчета толщины огнезащитного покрытия

Экспериментальный метод расчета толщины покрытия заключается в том, что на основании ряда экспериментальных оценок предела огнестойкости конструкции с различной приведенной толщиной и разными толщинами покрытий строятся зависимости, с помощью которых рассчитываются параметры наносимого слоя.

В отдельных случаях информация по необходимым толщинам покрытий для различных конструкций и пределов огнестойкости выполняется в виде таблиц.

Расчет экономической эффективности применения огнезащитного покрытия

Все затраты на средства противопожарной защиты, направленные на локализацию и ликвидацию пожара делятся:

Первая группа - установки автоматического пожаротушения, системы противодымной защиты, внутренняя система пожарного водоснабжения, противопожарные резервуары, система молниезащиты, внутренняя пожарная сигнализация;
вторая группа - затраты на средства противопожарной защиты зданий в целом и их конструктивных элементов; устройство противопожарных стен, дверей, перегородок и перекрытий, огнезащита строительных конструкций и т. п.
третья группа - затраты на средства противопожарной защиты, предназначенные для обеспечения быстрой эвакуации людей из опасных зон; эвакуационные пути, наружные пожарные лестницы, безопасные зоны и помещения и другие.
четвертая группа - общеплощадные затраты на устройство пожарного депо, внешней пожарной сигнализации, пожарных дорог и т.п.

Для каждого конкретного объекта может быть найдено такое решение этой проблемы, при котором с учетом заданных ограничений достигается минимум затрат на обеспечение установленного уровня пожарной безопасности. Причем на практике целесообразно проведение как комплексной оптимизации системы (поиск глобального минимума), так и частичной оптимизации по одной или нескольким подсистемам.

В качестве показания эффективности технологических параметров применения огнезащитных покрытий можно использовать обобщенный показатель, характеризующий суммарный возможный ущерб (С) [Л10], вызванный воздействием огня на строительные конструкции зданий (сооружений). Под ущербом (С ущ.) понимается стоимостное выражение частичного или полностью вышедших из строя в результате воздействия огня строительных конструкций (С ск), а также возможности экологического ущерба (С зкол) и ущерба, нанесенного инфраструктуре района (С инф), прилегающего к рассматриваемому зданию (сооружению)

С ущ = С ск + С инф + С экон (6)

Кроме того, к суммарному ущербу следует отнести и затраты (С озп), связанные с приобретением сырья (С сыр), изготовлением и выполнением работ по нанесению огнезащитного покрытия на строительные конструкции (С раб), а также с контролем качества покрытия (С к) как в процессе его изготовления, так и после нанесения на защищаемые поверхности:

Созп = С сыр + С раб + С к (7)

Таким образом, в качестве критерия оптимизации технологических параметров применения огнезащитных покрытий целесообразно установить критерий, основанный на минимизации суммарного ущерба С Σ :

С Σ =С ущ + С 0зп + С к (8)

Для оценки экономической эффективности рассматриваемых вариантов огнезащиты можно использовать приведенные затраты на реализацию i - того варианта (Л7, с.174):

З i = С i + Е н К i , где (9)

З i - приведенные затраты по i - тому варианту огнезащиты; руб./м 2 ,

С i - сметная стоимость i - тому варианту огнезащиты (без плановых накоплений), руб./м 2 ,

Е н - нормативный коэффициент эффективности капитальных вложений;

К i - капитальные вложения в базу стройиндустрии по i - тому варианту; руб./м 2 .

Расчет проекта огнезащиты

Проект огнезащиты должен содержать следующие разделы:

Обоснование выбора средств и способа огнезащиты;

Определение толщины защитного слоя для каждого типа конструкции;
чертежи конструктивной огнезащиты.

Проект огнезащиты строительных конструкций, отвечающий требованиям по огнестойкости, осуществляется с целью обоснованного выбора таких материалов, структуры, формы, размеров, условий заделки и параметров огнезащиты каждой металлоконструкции, которые гарантируют минимум ее массы, материалоемкости и стоимости.

При разработке проекта огнезащиты необходимо учитывать конструктивные, эксплуатационные, технологические и технико-экономические факторы:

Значение требуемого предела огнестойкости конструкции;
тип конструкции и ориентацию защищаемых поверхностей в пространстве (колонны, стойки, ригели, балки, связи);
вид нагрузок, действующих на конструкцию (статическая, динамическая);
температурно-влажностные условия эксплуатации огнезащиты и выполнения работ по ее нанесению;
степень агрессивности окружающей среды по отношению к огнезащите и материалу конструкции;
увеличение нагрузки на конструкцию за счет массы огнезащиты;
эстетические требования к конструкции;
технико-экономические показатели.

Для каждого конкретного здания на разработку проекта огнезащиты стальных конструкций дается вариант здания или его часть, которую необходимо защитить от огня в соответствии с требованием СНиП 21.01.97* «Пожарная безопасность зданий и сооружений» и другими СНиП. Ниже приведены два примера расчета огнезащиты.

Пример № 1

Административное здание представляет собой пятиэтажное здание с пристройкой и мансардой. Колонны должны иметь предел огнестойкости 1,5 часа, элементы перекрытия 1,0 час.

По проектной документации, поэтажные колонны выполнены из двутавра № 25, 30 и 35, связи из уголка 110x8. Балки перекрытий выполнены из двутавра № 35. Металлоконструкции огрунтованы грунтом ГФ - 021.

С помощью строительных чертежей, рассчитывается приведенная толщина металлоконструкций по имеющейся информации (см. табл.3).

С помощью интерполяции данных табл. (Стр.14) рассчитывается собственный предел огнестойкости конструкции. Оказывается, что ее предел явно недостаточен (Табл. № 1). Для увеличения предела огнестойкости балок можно воспользоваться краской «Айсберг-101». Необходимая толщина слоя покрытия определяется по данным в табл. № 2.

Колонны для обеспечения предела огнестойкости 1,5 часа можно защитить огнезащитным покрытием «Айсберг-101». С помощью таблиц определяется необходимая толщина покрытия. Результат заносится в таблицу.

В связи с тем, что профиль защищаемых конструкций не сложен, рабочие чертежи с покрытием можно не делать.

Таблица № 2 (3)


Пример № 2

В строящемся здании торгового комплекса несущие элементы здания (колонны, балки перекрытия и покрытия, косоуры и площадки лестниц, связи жесткости, подвески раскосы и т. п.) запроектированы и выполнены из огрунтованных металлических конструкций различного профиля.

Согласно таблице 1 СНиП 2.08.02 - 89* «Общественные здания и сооружения», здание торгового комплекса должно быть не ниже II степени огнестойкости. В соответствии с требованиями таблицы СНиП 21-01-97* «Пожарная безопасность зданий и сооружений» для здания II степени огнестойкости несущие конструкции должны иметь следующий предел огнестойкости:

Колоны - R90
марши и площадки лестниц - R60
элементы покрытий REJ - 45

Обобщенные данные о приведенной толщине металла (рассчитанной по формуле δпр в соответствии с рабочими чертежами для каждого конкретного случая - вид конструкции и заделка ее) и собственном пределе огнестойкости приведены в табл.3.

Таблица № 3 (4)

Вид конструкции

Профиль металла

Колонны К - 1

Связи СВ - 1

Подвески плит перекрытия

Элементы лестниц

Балки перекрытий

С эстетической точки зрения и по своим защитным свойствам для защиты перечисленных в табл. № 3 конструкций лучше всего подходит состав «Айсберг-101», толщина которого, рассчитанная по таблице из пожарного сертификата для всех видов конструкций объекта.

Таблица № 4 (5)

Вид конструкции

Требуемый предел огнестойкости, час

Толщина покрытия, мм

Колонны К - 1

Связи СВ - 1

Подвески плит перекрытия

Элементы лестниц

Балки перекрытий


Литература

1. С.В. Собурь «Пожарная безопасность предприятия», М., Спецтехника, 2001 г., с. 88.

3. А.И. Яковлев «Расчет огнестойкости строительных конструкций», М., Стройиздат, 1988 г.,с.9, с. 96.

4. Романенков И.Г., Зигерн-Корн В.Н. «Огнестойкость строительных конструкций из эффективных материалов», М., Стройиздат, 1984 г., с.194.

5. Страхов В.Л., Гаращенко А.Н., Рудзинский В.П. «Математическое моделирование работы и определение комплекса характеристик вспучивающейся огнезащиты», «Пожарная безопасность», № 3, 1997 г., с 21-30.

6. С.В. Собурь «Огнезащита строительных материалов и конструкций». Справочник, М., Спецтехника, 2001 г., с. 78.

7. В.Л. Страхов, А.И. Крутов, Н.Ф. Давыдкин «Огнезащита строительных конструкций», ТМР, М.2000 г., с. 366

8. ЦНИИСК, Научно-технический отчет «Разработать концепцию создания и технологию производства структурированных покрытий для огне-теплозащиты несущих и ограждающих конструкций зданий и сооружений, в том числе для инфраструктуры соответствующей городской старинной застройки без изменения конфигурации конструктивных элементов»,М., 2000 г.

9. Страхов В.Л., Гаращенко А.Н., Рудзинский В.П. Расчет нестационарного прогрева многослойных огнезащитных конструкций. «Вопросы оборонной техники». Сер. 15, вып.1, 1991г., с. 30-36.

Перед выполнением огнезащитных мероприятий необходимо разработать проект и провести его согласование. Проектирование огнезащиты строительных конструкций – это мероприятия по разработке проектной документации для зданий и сооружений. Проектирование огнезащиты предусматривает следующие этапы:

  • оценку состояния строительных конструкций здания. По результатам оценки будет делаться вывод о степени огнестойкости здания с указанием его особенностей;
  • рассмотрение рабочей документации, которая предусматривает проведение огнезащитных работ;
  • ТЭО - технико-экономическое обоснование решения по огнезащите;
  • выбор оптимальных огнезащитных составов, веществ и материалов вместе с расчетом их расхода;
  • технологическая инструкция по нанесению покрытия и последующей его эксплуатации, предоставление сертификатов, которые будут подтверждать требуемые значения эффективности огнезащиты;
  • проект производства огнезащитных работ с условиями производства работ, также мероприятия по ТБ, технологию производства работ, сдачу работ, контроль качества работ.

В проекте обязательно присутствуют следующие пункты:

  • классификация здания по категориям пожароопасности;
  • температурные пределы для основных конструкций;
  • группа состава для обработки;
  • полное его наименование вместе с маркой, производителем и номерами сертификатов;
  • толщину состава;
  • перечень конструкций, которые будут обработаны, с толщиной слоя для каждого вида конструкций;
  • расчетная часть по площадям конструкций;
  • расчетная часть по количеству раствора на 1 кв.м.

Вся проектная документация должна разрабатываться организацией, у которой есть лицензия на этот вид деятельности.

Квалифицированная проектная проработка огнезащиты поможет избежать вынужденных затрат заказчика на неоправданно завышенный расход материалов и на исправления ошибок. Любые ошибки, вызванные недостаточной проработкой проекта, могут привести к серьезным финансовым потерям. Подобные ошибки могут возникнуть в результате:

  • неправильно принятого предела огнестойкости несущих конструкций, как следствие - ошибочного выбора ОЗС, расчета его расхода;
  • недостаточного учета условий эксплуатации здания при выборе ОЗС, который также приводит к неверному выбору ОЗС;
  • неправильной подготовки поверхности, а это приводит к снижению огнезащитной эффективности покрытия и пр.

При разработке проекта специалистами определяются тип и площадь здания, состояние защищаемых конструкций, качество наружной поверхности. В зависимости от этих данных подбирается требуемый огнезащитный состав. Проектирование огнезащитной обработки выполняется в соответствии с законодательством РФ, технической и нормативной документацией.

Чтобы огнезащита соответствовала нормам и не возникло неоправданных переплат, её необходимо рассчитать.

  1. Проектирование огнезащиты металлоконструкций регламентирует ГОСТ Р53295−2009.
  2. Проектирование огнезащиты древесины регламентирует ГОСТ Р53292-2009.
  3. Проект позволяет контролировать выполнение работ по огнезащите или поручить мероприятия другими подрядчикам.
  4. Грамотное проектирование гарантирует избежание рисков: удорожание или отсрочку сдачи проекта, а также штрафы, предписания ГПН и пр.
  5. Наши проектировщики составят план работ на основании современных, результативных технологий.

Зачем нужна огнезащитная обработка

Огнезащитная обработка позволяет:

  • предотвратить обрушение здания, что снизит экономические потери от пожара и уменьшит количество пострадавших;
  • увеличить длительность воздействия огня, что даст дополнительное время людям покинуть горящее здание;
  • увеличить степень защиты персонала или жильцов от отравляющих факторов, что позволяет уменьшить людские потери;
  • защитить технологическое оборудование, что опять уменьшит экономические потери;
  • ограничить локализовать пожар, что будет способствовать более быстрому тушению;
  • увеличить степень безопасности для работы пожарных.

Выделяются следующие направления огнезащиты:

  1. огнезащитная обработка металлоконструкций;
  2. древесины и деревянных конструкций;
  3. обработка воздуховодов;
  4. обработка кабельной продукции;
  5. обработка тканей.

Окончательная стоимость работ станет известной только после обследования объекта и зависит от типа конструкций, площади конструкций объекта и многих иных факторов.

Пример: проектирование огнезащиты металлоконструкций

Одна из частых причин гибели людей на пожаре - обрушение зданий. Неправильно спроектированная огнезащита не даст металлическому сооружению необходимых полутора часов, чтобы оно устояло в огне. Именно столько времени занимает полная эвакуация.

Огнестойкость металлоконструкций очень невелика:

  • сталь 3 мм выдерживает огонь только в течении 5 мин.;
  • 30 мм – 27 мин.

Огнезащитные краски, эмали, лаки обеспечат сохранность металлу до полутора часов. Проектировщики учитывают способность вспучивающихся красок утолщаться до 40 раз. Конструктивная защита от огня и грамотное её проектирование затормозят деформацию металла в огне до 4 часов.

Проектирование огнезащитных работ по металлу - это разработка комплекта документации для выполнения огнезащитной обработки, для проверки и для воспроизведения промежуточных и конечных решений.

Проект расчёта содержит следующие разделы:

  1. обоснование выбора огнезащитных средств и материалов и способа огнезащиты;
  2. определение толщины слоя огнезащиты для каждого типа конструкции;
  3. чертежи.

Так как температура металлических конструкций при нагревании зависит от толщины металла, то при выполнении проекта выполняются расчёты этого параметра. Толщина металла - это отношение площади поперечного сечения конструкции к её периметру. Площадь поперечного сечения можно взять из справочника сортамента. Периметр обогреваемой поверхности рассчитывается как сумма длин сторон конструкции, которая будет находиться в свободном доступе для огня. Для расчетов используется формула:

Fпр= S на 10 / P, где:

Fпр - приведенная толщина металла;

S - в кв.см. площадь поперечного сечения;

P - в см. обогреваемый периметр.

На основании этих расчетов, техзадания, СНиПа определяется степень огнестойкости здания. Далее, в соответствии со СНиП 21-01-97 рассчитывается требуемый для достижения этого параметра предел огнестойкости отдельных элементов конструкции:

  • лестничных площадок и маршей;
  • колонн;
  • покрытий и пр.

Выбирается тип покрытия, а затем по справочным таблицам производится расчет толщины и количества слоёв. Если конструкция поверхности сложная, то выпускаются рабочие чертежи покрытия.

Наши преимущества

  1. Мы предлагаем доступные цены на проектирование огнезащиты на все типы конструкций.
  2. Благодаря грамотному проектированию вы получите значительную экономию средств за счет точного расчета расхода материала и исключения возможности ошибок.
  3. Мы очень долго работаем на этом рынке и владеем всеми нюансами проведения работ.

Компетентное проектирование гарантирует:

  • сокращение финансовых затрат;
  • увеличение срока эксплуатации объекта;
  • возможность осуществления проверки.

Некачественное проектирование или его отсутствие определяет:

  • ошибки во время выполнения работ;
  • увеличение длительности реализации проекта;
  • частые несчастные случаи;
  • дополнительные затраты.

Качественно выполненная огнезащита является существенным слагаемым в обеспечении недопущения ситуаций, являющихся пожароопасными. Именно этим объясняется востребованность такой услуги, как проектирование огнезащиты, на современном рынке предоставления услуг. ООО «ТриО» профессионально осуществляет проектные работы, разрабатывая надёжную и долговечную огнезащиту объектов любого назначения и их узловых элементов.

Последовательность работ

Получив заказ на проектирование огнезащиты металлоконструкций, наша компания приступает к его поэтапному выполнению.

  • На предварительном этапе оценивается состояние изделий, подлежащих огнезащите, с учётом их местоположения и роли, которую они выполняют в конструкции объекта. Результатом работ на данном этапе становится принятие решения о степени фактической огнестойкости объекта на момент начала работ и отмечаются специфические особенности, которые требуется учитывать в дальнейшем.
  • Оценивается наличие и состояние рабочей документации, согласно которой планируется выполнять работы по огнезащите.
  • Формулируется ТЭО решения по предстоящим работам (по согласованию с заказчиком). Проектирование огнезащиты воздуховодов осуществляется по такому же алгоритму.
  • Выполняется подбор требующихся огнезащитных материалов (составов и т.п.) по ассортименту и количеству (с учётом предстоящего расхода).
  • Проводится ознакомление с:
  1. Руководствами по нанесению защитных покрытий и последующей эксплуатации объектов, имеющих подобную защиту;
  2. Имеющимися у поставщиков выбранных материалов сертификационными документами, наличие которых является юридическим подтверждением их эффективности.
  • Проектирование огнезащиты предусматривает разработку проекта выполнения огнезащитных работ, в материалах которого обязательно полностью раскрываются такие вопросы, как:
  1. Условия выполнения работ;
  2. Мероприятие, выполнение которых гарантирует безопасность их осуществления;
  3. Технология выполнения каждого из этапов;
  4. Организация контроля над качеством проводимых операций;
  5. Процедура сдачи объекта заказчику.

Цена на проектирование огнезащиты металлоконструкций

Стоимость проектирования огнезащиты металлоконструкций рассчитывается отдельно для каждого конкретного заказа и зависит от ряда внешних показателей. Например, от того, для какого объекта проводится проектирование. Это могут быть строительные конструкции различного назначения, изготовленные из разных материалов и играющие различную роль в общей конструкции объекта и т.п.

В любом случае наши специалисты выполнят работы в строгом соответствии с требованиями действующих нормативов, в приемлемые сроки и с надлежащим качеством. Клиент заплатит только за профессионально выполненную работу.

Московская пожарная компания выполняет проект огнезащиты металлических конструкций и огнезащитную обработку металла уже более 15 лет на всей территории России, в том числе в Республике Крым и г. Севастополь.

Мы выполняем огнезащиту стальных конструкций огнезащитными красками, базальтовыми фольгированными оберточными материалами и т.д., в зависимости от требуемого предела огнестойкости и других характеристик объекта. Наши специалисты порекомендуют Вам наилучшие условия проведения огнезащитных работ с учетом Ваших пожеланий. Современная огнезащита для металлоконструкций, цена которой формируется на максимально выгодных для заказчика условиях, – надежный способ защитить изделия из металла, а соответственно и всё здание, от разрушительного воздействия огня.

Профилактические меры противопожарной защиты и их ограничения

Предупредительные меры противопожарной защиты также зависят от определенных обстоятельств, которые могут повлиять на эффективность мер противопожарной защиты, а именно. Метод строительства, такой как, например, положение здания на одном или нескольких зданиях, тип конструкции, т.е. строительные и строительные материалы, расположение здания в зависимости от его доступности, размеров и распределения внутри здания, Наличие технических средств, таких как системы контроля дыма, системы дымоудаления, системы обнаружения пожара или системы пожаротушения. В то же время задачи превентивной противопожарной защиты в области напряженности лежат между публичными задачами и частными интересами, например, в отношении дизайна, выбора строительных материалов и других пожеланий клиента.

Наша компания имеет допуски проектного и строительного СРО, а также лицензию МЧС для выполнения огнезащиты металла. Качество работ обязательно подтверждается положительным заключением испытательной пожарной лаборатории МЧС соответствующего субъекта РФ. Специалисты компании выполняют профессиональную огнезащиту металлических конструкций по конкурентоспособным ценам с учетом всех пожеланий заказчика.

Часто также возникают конфликты интересов между превентивными мерами противопожарной защиты и другими областями права, такими как защита памятников и кадастров, законодательство о городском планировании, а также законодательство о дорожном движении, торговое и трудовое право и другие области права.

Основные принципы противопожарной защиты

В некоторых случаях поиск решений для целей защиты может состоять в рассмотрении различных аспектов. В этом отношении качество концепций противопожарной защиты неразрывно связано с необходимыми знаниями и кадровыми характеристиками производителей. Нормативы по профилактической противопожарной защите относятся к строительным нормам, которые должны учитываться при планировании и осуществлении зданий, на которые возложены ответственность отдельных стран в Германии. Для достижения приближения местных строительных норм был выпущен код модели, который, однако, имеет только рекомендательный характер.

Задача огнезащиты металлоконструкций

Несмотря на то, что металлоконструкции не подвержены горению, огнезащитная обработка металла требуется для того, чтобы огонь и высокая температура не стали причиной изменений в его структуре и как следствие нарушения прочности и геометрических параметров металлических конструкций. Проект огнезащиты металлических конструкций должен стать частью комплексных проектных работ еще до начала строительства зданий и сооружений из металла.

В дополнение к общим строительным нормам существуют также правила и директивы, которые были выпущены для конкретных типов зданий и которые подвергаются особым рискам из-за доступности общественности и, следовательно, пользуются особыми требованиями защиты, такими как школы, гостиничные компании или сборочные центры. Такие специальные правила или указы также доступны для специальных зданий, таких как высотные здания, промышленные здания или гаражи.

Огнеупорная установка представляет собой серию оборудования и элементов, предназначенных для предотвращения пожара в доме, здании, общественном здании или промышленном предприятии и в случае пожара выявлять, сообщать, гасить и минимизировать его воздействие на людей и имущество.

Огнезащита металлоконструкций, цена которой определяется выбором определенного способа огнезащитной обработки металла, заключается в образовании на его поверхности специальных теплоизолирующих экранов. Если огнезащитная обработка металлических конструкций выполнена правильно, металл выдерживает высокие температуры и воздействие огня без изменения своих физических свойств . Надежная огнезащита металлических конструкций существенно замедляет процесс их нагревания.

В проекте пожарной установки уровень риска собственности или объекта или зоны, которая должна быть защищена, оценивается в соответствии со строительными материалами , продуктами и товарами, которые используются или хранятся, а также деятельностью или процессами, которые. Как только риск оценивается, устанавливаются необходимые элементы для принятия того же решения, которые могут представлять собой элементы пассивной защиты, такие как изоляция и краски, элементы обнаружения и сигнализации, активные защитные элементы, такие как спринклеры, пожарные гидранты или огнетушители и сигнальные элементы таких как плакаты и аварийное освещение.

Способ огнезащиты для металлоконструкций определяется следующими параметрами:

  • необходимые пожарно-технические характеристики объекта,
  • вид и назначение конструктивного элемента,
  • уровень температуры и влажности на объекте,
  • эстетические и практические требования.

Все это учитывает грамотно разработанный проект огнезащиты металлоконструкций, который в короткие сроки выполняют специалисты Московской пожарной компании.

Если это новая конструкция, установка будет частью строительного проекта . В любом случае, компания или специалист будут запрошены заблаговременно для подготовки проекта или памяти. Обращение в авторизованную компанию по установке или к независимому квалифицированному специалисту. Проект установки противопожарной защиты должен быть составлен и подписан компетентным специалистом.

Результаты испытаний под давлением и ввода в эксплуатацию выполняются в соответствии с правилами, в том числе с техническими данными оборудования и оборудования. Договор на техническое обслуживание объектов между владельцем установки и холдинговой компанией.

  • Фактически выполняется проектная или техническая память.
  • Сертификат зарегистрированной установки.
  • Свидетельство о первоначальной проверке, когда это необходимо.
Существуют две основные регулирующие отрасли применения в зависимости от того, является ли предприятие промышленным использованием или каким-либо другим использованием, например, для жилого дома, школы или общественной автостоянки.

Современная обработка металлических конструкций

Проект огнезащиты металлоконструкций определяет, какая именно огнезащита стальных и металлических конструкций будет использоваться на объекте. Если раньше огнезащита металлических конструкций выполнялась с помощью кирпичной кладки , облицовки асбестом и цементом, то сегодня на смену ей пришла огнезащитная обработка металлических конструкций облегченными огнестойкими составами, материалами и огнезащитными красками . Такая огнезащитная обработка металлоконструкций:

  • Строительный технический кодекс.
  • Положения о пожарной безопасности в промышленных учреждениях.
Чтобы соответствовать действующим нормам по противопожарным системам , необходимо узаконить установку в соответствии с уровнем риска. Поэтому, как только оборудование будет установлено, вам необходимо будет зарегистрировать в компетентном органе технический отчет или проект, соответствующий этой установке.

Установка или техническое обслуживание объектов, разрешенных и зарегистрированных региональным правительством. Архитекторы, технические архитекторы, инженеры или технические инженеры подпишут проект установки. Плата за разработку проекта должна быть добавлена ​​к визе проекта, если это необходимо, и административные сборы.

  • отличается доступной ценой ,
  • имеет длительный срок эксплуатации,
  • легко восстанавливается,
  • не создает дополнительных нагрузок.

Среди современных составов, с помощью которых производится огнезащитная обработка металлоконструкций:

  • Вспучивающиеся огнезащитные краски, которые при нагревании увеличиваются в десятки раз, образуя вспененный слой негорючих веществ;
  • Невспучивающиеся, которые создают специальный теплозащитный экран.

Наиболее эффективной считается огнезащита стальных конструкций и других видов металла с помощью вспучивающихся красок и оберточных фольгированных материалов..

Инженеры, специализирующиеся на пожарных проектах, решают все ваши запросы

Применяется ли такое же правило в жилище для одной семьи, как в промышленном здании? Нет, в первом случае это исключительное применение Технического строительного кодекса и региональных и муниципальных правил. Для промышленных зданий применяются правила безопасности и противопожарной защиты в промышленных предприятиях.

Запрошены последние запросы бюджета проекта пожара

Возможность строительного элемента поддерживать функцию подшипника, требуемую в течение заданного периода времени, а также целостность и теплоизоляцию в условиях, указанных в соответствующем стандартном тесте. Как узнать, подходит ли огнетушитель?

Часто задаваемые вопросы о предотвращении пожаров

Мы унаследовали офисное здание в центре, которое довольно старое, и мы хотели бы его реабилитировать и превратить в туристические апартаменты. Мы надеемся нанять проект реабилитации, но не имеем четкого представления о том, что это такое или какой вид должен быть более эффективным. Может ли кто-нибудь уточнить?
  • Нужен ли нам проект реконструкции здания?
  • Здравствуйте.
  • Мы хотели бы быть более эффективными и улучшать возможности нашего здания.
Знаете ли вы две системы противопожарной защиты (пассивную защиту и активную защиту) и их приложения?

Преимущества Московской пожарной компании

Московская пожарная компания выполняет проекты огнезащиты металлических конструкций и производит качественную огнезащиту металла во всех городах России, в том числе и в Крыму.

Среди преимуществ, которыми отличается огнезащита металлоконструкций, выполненная нашими специалистами:

Пример: проектирование огнезащиты металлоконструкций

Это система защиты, разработанная так, что огонь не распространяется и откладывается до максимума. Таким образом, противопожарные работы могут быть выполнены без ущерба для всей структуры здания, чтобы люди своевременно эвакуировали место и минимизировали финансовые последствия для недвижимости, машин и оборудования.

Короче говоря, пассивная защита имеет целью разделение очага огня. Сегодня в Бразилии пассивная защита применяется только в промышленности, особенно нефти, горнодобывающей промышленности и стали. В Европе и США пассивная защита также применяется в коммерческих и жилых зданиях.

  • Цена, отличающаяся максимальной доступностью;
  • Огромный выбор современных материалов , оптимально соответствующих особенностям любой конструкции;
  • Допуск СРО проектное и строительное, а также лицензия МЧС, для выполнения проекта и работ по огнезащите;
  • Долгосрочные соглашения с испытательными пожарными лабораториями МЧС во многих субъектах Российской Федерации , благодаря которым при необходимости после осуществления работ по огнезащите металлических конструкций на объект выезжает уполномоченный сотрудник лаборатории, проверяет качество огнезащитной обработки металлоконструкций и составляет положительное заключение по результатам;
  • Проведение огнезащитных работ на действующих и строящихся объектах, а также в зданиях, находящихся на реконструкции;
  • Выезд специалиста в день обращения для выполнения точных расчетов площади огнезащиты металлоконструкций, которые подлежат обработке;
  • Нанесение огнезащитных материалов на любой высоте в минимальные сроки. По желанию заказчика работы могут проводиться в ночное время, а также в выходные и праздничные дни;
  • Использование только сертифицированных составов, отлично зарекомендовавших себя при проведении огнезащитной обработки металлических конструкций и последующей эксплуатации. Для их нанесения применяется специальное оборудование безвоздушного распыления Graco и Wagner либо кисти и валики.

Специалисты Московской пожарной компании работают на всей территории России и в своей работе применяют качественное отечественное оборудование и материалы, поэтому наши цены на огнезащиту металлоконструкций остаются стабильными. Каждый месяц мы предлагаем для наших клиентов специальные выгодные предложения!

Активная защита также представляет собой систему, состоящую из набора элементов, который направлен на немедленную борьбу с уже запущенным огнем, не позволяя ему распространяться по всему зданию, пока пожарная служба не достигнет места. С активной защитой у нас уже больше знакомо, потому что он состоит из элементов, уже известных в нашей повседневной жизни в коммерческих зданиях, многоквартирных жилых зданиях и в промышленности, а также в общественных местах, таких как автобусные станции и события.

Это огнетушители, пожарные гидранты, гвоздики и сигнализация. Вместе с этими элементами система сигнализации также функционирует с указанием аварийных выходов, аварийного освещения и демаркации путей эвакуации. Проекты активной защиты разрабатываются в соответствии со стандартами Военной пожарной бригады каждого государства и затем должны быть одобрены одним и тем же органом.

Расчёт стоимости огнезащиты

Для оценки общей стоимости огнезащиты металлоконструкций необходима информация о следующих параметрах:

  • Требуемом пределе огнестойкости металла, который всегда помогут установить специалисты нашей компании;
  • Виде огнезащитного состава, который также готовы определить наши специалисты;
  • Сроках и графике проведения работ на объекте.

Проекты металлических конструкций

Проверьте ниже курсы, которые составляют курс. Постоянная и переменная нагрузка, включая ветровые нагрузки. Стали и профили и их свойства. Размеры тяговых стержней. Измерение сжатых стержней. Измерение изогнутых стержней. Измерение тяговых баров. Калибровка сжатых баров. Расчет и измерение металлических ферм для покрытий.

Структурированные проекты железобетонных конструкций

Профили для проката и пайки. Расчет и измерение стальных ворот. Интерфейс проектирования конструкций с другими областями. Общие структурные модели для бетонных зданий. Постройте поэтапный пример: от проектирования до создания форм и конструкций рамок.

Наша компания уже более 10 лет осуществляет комплексные работы высочайшего профессионального уровня по противопожарной обработке металлоконструкций любой степени сложности, на объектах различного масштаба. При производстве огнезащитной обработки мы используем новейшие технологии по подготовке поверхности к нанесению огнезащитных средств, а также при самой обработке. Оборудование и материалы от лучших импортных производителей позволяют максимально качественно и в кротчайшие сроки наносить покрытия, устойчивые к воздействию высоких температур.

Пример проекта огнезащиты: основные этапы

Типичные структурные модели для специальных элементов из железобетона. Примеры детальной поэтапной детализации, от проектирования до создания форм и конструкций рамок. Структурный анализ структурных кладочных зданий. Параметры калибровки. Измерение структурных элементов . Пример применения в обычном здании.

Акцент основных моментов модели, ее истоков и обоснований. Обсуждение прочности на сжатие шатунов и узловых зон с учетом существующих стандартов. Шаблоны применяются к различным типам структуры и их частям. Конечные элементы, одномерные, двумерные и трехмерные. Введение в структурное моделирование.

Проектирование огнезащиты металлоконструкций осуществляется профессиональными инженерами. Любой проект по огнезащите металлоконструкций создается индивидуально для каждого объекта, с учетом всех особенностей постройки, с подбором материалов и методов нанесения огнезащиты на металлоконструкции.

Конструктивные элементы и расположение пассивных арматур. Механизмы простого бетона и вооруженного бетона. Методы постановки на охрану для плоских структурных элементов, подверженных нагрузке, ортогональной ее поверхности. Методы постановки на охрану линейных структурных элементов стержней, подвергнутых нормальным и касательным запросам. Методы постановки на охрану структурных элементов, подаваемых на обычные составные запросы. Особые проблемы детализации брони.

Классификация современных методов огнезащита металлоконструкций

Стали и профили и их характеристики. Постоянная и переменная нагрузка, включая ветровые воздействия и воздействия. Измерение структурных компонентов. Общие характеристики конструкций со смешанными стальными и бетонными конструкциями. Измерение составных балок из стали и бетона. Размеры стальных и бетонных композитных ферм. Размеры стальных и бетонных колонн. Шлифование смешанных плит из стали и бетона. Смешанные стальные и бетонные соединения.

При разработке проекта учитывается любая малейшая деталь, связанная с огнезащитой металлоконструкций на доверенном объекте. Проект по огнезащите металлоконструкций содержит следующую информацию:

Техническое задание
- Техническое решение

Характеристика состава:

Показатели огнезащитного эффекта
- Условия нанесения средства
- Условия и срок эксплуатации огнезащитного покрытия
- Условия хранения и транспортировки состава
- Данные о производителе огнезащитного состава

Исходная информация
- Расчет оптимальной толщины покрытия
- Расчет расхода огнезащитного материала

Выполнение работы
- Подготовка поверхности к огнезащитной обработке
- Подготовка материала или состава для огнезащиты
- Технология огнезащиты металлоконструкций
- Контроль качества покрытия
- ОТ и ТБ

Помимо основных данных и расчетов, проект по огнезащите металлоконструкций должен дополняться приложениями:

Чертеж, если производится конструктивная огнезащита металлоконструкций
- Ксерокопия сертификата на огнезащитный материал
- Копия паспорта токсиколого-гигиенического на огнезащитный состав
- Копия требований по работе
- Копия лицензии инженера - разработчика проекта

После завершения нашими сотрудниками всех противопожарных обработок объекта, которые предусматривал проект по огнезащите металлоконструкций, производится проверка качества окрасочных работ. Такую проверку проводит инспектор по надзору за качеством с помощью специализированных измерительных приборов, а также визуально, где отмечаются следующие показатели:

Адгезия покрытия к поверхности
- Толщина слоя сухого покрытия
- Качество покрытия
- Видимые дефекты покрытия

Пример проекта огнезащиты металлоконструкций можно скачать в word (doc)

В архиве: Пояснительная, Расчет приведенной толщины металла, необходимой толщины огнезащитного слоя покрытия, защищаемой площади и расхода огнезащитной краски

2 Поведение стальных конструкций в условиях пожара и необходимость их огнезащиты 9

3 Выбор огнезащитных материалов и их характеристики 11

3.1 Техническая характеристика огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL 11

3.2 Входной контроль краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL 12

3.3 Оборудование и инструменты 12

3.4 Технология выполнения работ по нанесению огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL 13

3.5 Контроль качества покрытия производителем 17

3.6 Гарантийный срок эксплуатации покрытия 18

3.7 Проверка огнезащитного покрытия при эксплуатации здания 18

3.8 Техника безопасности 18

4 Расчет приведенной толщины металла, необходимой толщины огнезащитного слоя покрытия, защищаемой площади и расхода огнезащитных материалов 19

5 Порядок получения заключения государственного пожарного надзора о состоянии и качестве огнезащитной обработки 22

6 Список используемых источников

Входной контроль огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL

Качество материалов гарантируется предприятием-изготовителем при соблюдении условий хранения и транспортировки в соответствии с ТУ 2316-010-29346883-2008 (НЕОФЛЭЙМ513) и ТУ 5769-002-72312159-2012 (ComposiTherm STEEL (CT-S)).

Каждая партия материала сопровождается сертификатом качества продукции, составленным в соответствии с требованиями ГОСТ 9980.1-86 и подписанным ОТК предприятия-изготовителя. Входной контроль по показателю «внешний вид» поступившей краски ведет прораб, мастер или бригадир.

На предприятии-изготовителе функционирует (сертифицированная LRQA) система менеджмента качества, в соответствии с ИСО 9001-2008, что является подтверждением гарантии качества продукции. Копия сертификата СМК представлена в Приложении Б.

Оборудование и инструменты

Для нанесения огнезащитной краски НЕОФЛЭЙМ513 на металлические конструкции необходимо следующее оборудование и инструменты:

Агрегат высокого давления типа «Вагнер» НС-940 (960);

Шпатель;

Малярная кисть, валик;

Толщиномер типа «Константа-5».

Для нанесения конструктивной огнезащиты ComposiTherm STEEL (CT-S) на металлические конструкции необходимо следующее оборудование и инструменты:

Шпатель;

Малярная кисть, валик;

Быстроходная дрель;

Ножницы, сапожный нож, строительный резак;

Толщиномер типа «ГРЕБЕНКА».

Технология выполнения работ по нанесению огнезащитной краски НЕОФЛЭЙМ513 и конструктивной огнезащиты ComposiTherm STEEL

Нанесение материалов производится в соответствии с техническими условиями ТУ 2316-010-29346883-2008 (НЕОФЛЭЙМ513) и ТУ 5769-002-72312159-2012 (ComposiTherm STEEL (CT-S)) и технологической инструкцией ТИ 021-2008 (Приложение Г).

Подготовка поверхностей для огнезащитной краски НЕОФЛЭЙМ513 включает следующие технологические процессы:

Восстановление антикоррозионного покрытия стальных конструкций грунтовкой ГФ-021 или другой, указанной в Технологических инструкциях.

При нанесении огнезащитной краски НЕОФЛЭЙМ513 температура окружающего воздуха должна быть не ниже +5 0С. Не допускается нанесение краски НЕОФЛЭЙМ513 при отрицательных температурах и воздействии атмосферных осадков.

Огнезащитная краска НЕОФЛЭЙМ513 наносится на поверхность стальных конструкций методом безвоздушного распыления, а также вручную послойно малярной кистью.

Таблица 3

Наименование показателя
Давление краски, МПа
19 - 22
Размер форсунки для распыления, дюйм
0015 - 0021
Угол распыла, градус
10 - 60
Расстояние от форсунки до покрываемой поверхности, мм:
при направлении краски вверх,
при направлении краски вниз и горизонтально
В труднодоступных местах
400 - 1000
500 - 1000
не менее 300
Длина шланга ¾”, м:
при работе одного поста
при работе двух постов
не более 60 м

не более 30 м

Продолжительность сушки промежуточных слоев краски НЕОФЛЭЙМ513 не менее 6 часов при температуре 20±2 0С и относительной влажности не более 85%. При снижении температуры и повышении влажности воздуха время сушки увеличивается.

Рисунок 1 - Двутавровая балка с нанесением краски НЕОФЛЭЙМ513 и покрывного состава

Для повышения влагоустойчивости поверх краски возможно нанесение покрывного слоя с цветовым оттенком согласно RAL, указанным генпроектировщиком или заказчиком (см. рисунок 1).

При наличии труднодоступных мест для металлических конструкций дополнительно предусмотреть забивку минераловатными плитами (группа горючести НГ) глубиной не менее 50 мм (см. рисунок 2). После монтажа минераловатных плит на открытую поверхность плит нанести слой огнезащитного покрытия толщиной не менее толщины слоя покрытия на конструкции, указанной в таблице 5.

Рисунок 2 - Огнезащитная обработка металлических конструкций в труднодоступных местах

Подготовка поверхностей для конструктивной огнезащиты ComposiTherm STEEL (CT-S) включает следующие технологические процессы:

Очистка от грязи, ржавчины, окалины, старой краски;

Восстановление антикоррозионного покрытия стальных конструкций грунтовкой ГФ-021;

Приготовление огнеупорной мастики;

Раскрой фольгированных базальтовых матов.

Приготовление огнеупорной мастики осуществляется непосредственно на строительной площадке ручным способом или с помощью быстроходной дрели в емкости. Емкость заполняется компонентом 1 (в жидкой форме), добавляется компонент 2 (порошкообразная форма) в соотношении 1:1 (по массе). Композиция перемешивается в течении 3 - 5 минут до получения однородной массы. Приготовление, нанесение и сушка состава производится при температуре не ниже +3 0С и относительной влажности воздуха не более 80%.

Раскрой базальтовых матов в соответствии с требуемыми размерами производится вручную с помощью ножниц, сапожных ножей или строительных резаков.

Огнеупорная мастика наносится с помощью шпателя, сушится до образования полусухой липкой пленки, затем сверху наклеиваются раскроенные по размерам базальтовые маты встык (см. рисунок 3, 4)

Рисунок 3 - Схема огнезащиты металлических конструкций огнезащитным составом ComposiTherm STEEL (CT-S)

Рисунок 4 - Металлическая конструкция с нанесением конструктивного огнезащитного состава ComposiTherm STEEL (CT-S).

Контроль качества огнезащитного покрытия производителем

В процессе нанесения на основе краски НЕОФЛЭЙМ513 в соответствии с ТУ 2316-010-29346883-2008 представителем фирмы (прорабом), которая проводит работы, контролируется проектная толщина и качество нанесения огнезащитного покрытия.

Внешний вид готового покрытия оценивается визуально. Огнезащитное покрытие на основе огнезащитной краски НЕОФЛЭЙМ513 должно соответствовать V классу в соответствии с ГОСТ 9.032-74. Покрытие, поврежденное при производстве работ, должно быть восстановлено в соответствии с технологическими инструкциями ТИ 021-2008.

Приемка выполненных огнезащитных работ оформляется актом сдачи-приемки работ установленной формы.

Процессе нанесения на основе конструктивной огнезащиты ComposiTherm STEEL (CT-S) в соответствии с ТУ 5769-002-72312159-2012 прорабом контролируется проектная толщина нанесения огнеупорной мастики. Толщина огнеупорной мастики контролируется с помощью толщиномера типа «ГРЕБЕНКА» по сырому слою в момент нанесения до приклеивания базальтового полотна. Контроль толщины сухого слоя мастики не допускается, поскольку не может дать точных данных. Это связано с тем, что при приклеивании огнезащитного мата к мастике часть мастики впитывается в базальтовый материал.

Внешний вид готового покрытия оценивается визуально. Покрытие, поврежденное при производстве работ, должно быть восстановлено в соответствии с технологическим регламентом No 002СТ-2012.

Гарантийный срок эксплуатации огнезащитных покрытий на основе огнезащитной краски НЕОФЛЭЙМ513 в соответствии с ТУ составляет 25 лет.

Проверка покрытия при эксплуатации здания

При эксплуатации здания, не реже 1-го раза в шесть месяцев, представителем службы эксплуатации здания производится проверка всего огнезащитного покрытия внешним осмотром. Результаты проверки заносятся в специальный журнал. При обнаружении дефектов (трещины, изменения цвета, инородные включения, отслоения, вздутия, нарушение целостности покрытия) необходимо произвести ремонт огнезащитного покрытия.