Обратные тригонометрические функции в релейной защите. Выразим через все обратные тригонометрические функции

Обра́тные тригонометри́ческие фу́нкции-это математические функции, являющиеся обратными тригонометрическим функциям.

Функция y=arcsin(x)

Арксинусом числа α называют такое число α из промежутка [-π/2;π/2], синус которого равен α.
График функции
Функция у= sin⁡(x) на отрезке [-π/2;π/2], строго возрастает и непрерывна; следовательно, она имеет обратную функцию, строго возрастающую и непрерывную.
Функция, обратная для функции у= sin⁡(x), где х ∈[-π/2;π/2], называется арксинусом и обозначается y=arcsin(x),где х∈[-1;1].
Итак, согласно определению обратной функции, областью определения арксинуса является отрезок [-1;1], а множеством значений - отрезок [-π/2;π/2].
Отметим, что график функцииy=arcsin(x),где х ∈[-1;1].симметричен графику функции у= sin(⁡x), где х∈[-π/2;π/2],относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcsin(x).

Пример№1.

Найти arcsin(1/2)?

Так как область значений функцииarcsin(x)принадлежит промежутку [-π/2;π/2], то подходит только значениеπ/6 .Следовательноarcsin(1/2) =π/6.
Ответ:π/6

Пример №2.
Найти arcsin(-(√3)/2)?

Так как область значений arcsin(x) х ∈[-π/2;π/2], то подходит только значение -π/3.Следовательноarcsin(-(√3)/2) =- π/3.

Функция y=arccos(x)

Арккосинусом числа α называют такое число α из промежутка , косинус которого равен α.

График функции

Функция у= cos(⁡x) на отрезке , строго убывает и непрерывна; следовательно, она имеет обратную функцию, строго убывающую и непрерывную.
Функция, обратная для функции у= cos⁡x, где х ∈, называется арккосинусом и обозначается y=arccos(x),где х ∈[-1;1].
Итак, согласно определению обратной функции, областью определения арккосинуса является отрезок [-1;1], а множеством значений - отрезок .
Отметим, что график функцииy=arccos(x),где х ∈[-1;1] симметричен графику функции у= cos(⁡x), где х ∈,относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arccos(x).

Пример №3.

Найти arccos(1/2)?


Так как область значений arccos(x) х∈, то подходит только значение π/3.Следовательно arccos(1/2) =π/3.
Пример №4.
Найти arccos(-(√2)/2)?

Так как область значений функции arccos(x) принадлежит промежутку , то подходит только значение 3π/4.Следовательноarccos(-(√2)/2) =3π/4.

Ответ: 3π/4

Функция y=arctg(x)

Арктангенсом числа α называют такое число α из промежутка [-π/2;π/2], тангенс которого равен α.

График функции

Функция тангенс непрерывная и строго возрастающая на интервале(-π/2;π/2); следовательно, она имеет обратную функцию, которая непрерывна и строго возрастает.
Функция, обратная для функции у= tg⁡(x), где х∈(-π/2;π/2); называется арктангенсом и обозначается y=arctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арктангенса является интервал(-∞;+∞), а множеством значений - интервал
(-π/2;π/2).
Отметим, что график функции y=arctg(x),где х∈R, симметричен графику функции у= tg⁡x, где х ∈ (-π/2;π/2), относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arctg(x).

Пример№5?

Найти arctg((√3)/3).

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение π/6 .Следовательноarctg((√3)/3) =π/6.
Пример№6.
Найти arctg(-1)?

Так как область значений arctg(x) х ∈(-π/2;π/2), то подходит только значение -π/4 .Следовательноarctg(-1) = - π/4.

Функция y=arcctg(x)


Арккотангенсом числа α называют такое число α из промежутка (0;π), котангенс которого равен α.

График функции

На интервале (0;π),функция котангенс строго убывает; кроме того,она непрерывна в каждой точке этого интервала; следовательно, на интервале (0;π), эта функция имеет обратную функцию, которая является строго убывающей и непрерывной.
Функция, обратная для функции у=ctg(x), где х ∈(0;π), называется арккотангенсом и обозначается y=arcctg(x),где х∈R.
Итак, согласно определению обратной функции, областью определения арккотангенса будет R,а множеством значений –интервал (0;π).График функции y=arcctg(x),где х∈R симметричен графику функции y=ctg(x) х∈(0;π),относительно биссектрисы координатных углов первой и третьей четвертей.

Область значения функции y=arcctg(x).




Пример№7.
Найти arcctg((√3)/3)?


Так как область значений arcctg(x) х ∈(0;π), то подходит только значение π/3.Следовательно arccos((√3)/3) =π/3.

Пример№8.
Найти arcctg(-(√3)/3)?

Так как область значений arcctg(x) х∈(0;π), то подходит только значение 2π/3.Следовательноarccos(-(√3)/3) =2π/3.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

Обратные тригонометрические функции имеют широкое применение в математическом анализе. Однако у большинства старшеклассников задачи, связанные с данным видом функций, вызывают значительные затруднения. В основном это связано с тем, что во многих учебниках и учебных пособиях задачам такого вида уделяется слишком мало внимания. И если с задачами на вычисление значений обратных тригонометрических функций учащиеся хоть как-то справляются, то уравнения и неравенства, содержащие такие функции, в большинстве своем ставят ребят в тупик. На самом деле, в этом нет ничего удивительного, ведь практически ни в одном учебнике не объясняется методика решения даже самых простейших уравнений и неравенств, содержащих обратные тригонометрические функции.

Рассмотрим несколько уравнений и неравенств, содержащих обратные тригонометрические функции, и решим их с подробным объяснением.

Пример 1.

Решить уравнение: 3arccos (2x + 3) = 5π/2.

Решение.

Выразим из уравнения обратную тригонометрическую функцию, получим:

arccos (2x + 3) = 5π/6. Теперь воспользуемся определением арккосинуса.

Арккосинусом некоторого числа a, принадлежащего отрезку от -1 до 1, является такой угол y из отрезка от 0 до π, что его косинус и равен числу x. Поэтому можно записать так:

2x + 3 = cos 5π/6.

Распишем правую часть полученного уравнения по формуле приведения:

2x + 3 = cos (π – π/6).

2x + 3 = -cos π/6;

2x + 3 = -√3/2;

2x = -3 – √3/2.

Приведем правую часть к общему знаменателю.

2x = -(6 + √3) / 2;

x = -(6 + √3) / 4.

Ответ: -(6 + √3) / 4 .

Пример 2.

Решить уравнение: cos (arccos (4x – 9)) = x 2 – 5x + 5.

Решение.

Так как cos (arcсos x) = x при x принадлежащем [-1; 1], то данное уравнение равносильно системе:

{4x – 9 = x 2 – 5x + 5,
{-1 ≤ 4x – 9 ≤ 1.

Решим уравнение, входящее в систему.

4x – 9 = x 2 – 5x + 5.

Оно квадратное, поэтому получим, что

x 2 – 9x + 14 = 0;

D = 81 – 4 · 14 = 25;

x 1 = (9 + 5) / 2 = 7;

x 2 = (9 – 5) / 2 = 2.

Решим двойное неравенство, входящее в систему.

1 ≤ 4x – 9 ≤ 1. Прибавим ко всем частям 9, будем иметь:

8 ≤ 4x ≤ 10. Разделим каждое число на 4, получим:

2 ≤ x ≤ 2,5.

Теперь объединим полученные ответы. Легко видеть, что корень x = 7 не удовлетворяет ответу неравенства. Поэтому единственным решением уравнения будет x = 2.

Ответ: 2.

Пример 3.

Решить уравнение: tg (arctg (0,5 – x)) = x 2 – 4x + 2,5 .

Решение.

Так как tg (arctg x) = x при всех действительных числах, то данное уравнение равносильно уравнению:

0,5 – x = x 2 – 4x + 2,5.

Решим полученное квадратное уравнение с помощью дискриминанта, предварительно приведя его в стандартный вид.

x 2 – 3x + 2 = 0;

D = 9 – 4 · 2 = 1;

x 1 = (3 + 1) / 2 = 2;

x 2 = (3 – 1) / 2 = 1.

Ответ: 1; 2 .

Пример 4.

Решить уравнение: arcctg (2x – 1) = arcctg (x 2 /2 + x/2) .

Решение.

Так как arcctg f(x) = arcctg g(x) тогда и только тогда, когда f(x) = g(x), то

2x – 1 = x 2 /2 + x/2. Решим полученное квадратное уравнение:

4x – 2 = x 2 + x;

x 2 – 3x + 2 = 0.

По теореме Виета получим, что

x = 1 или x = 2.

Ответ: 1; 2.

Пример 5.

Решить уравнение: arcsin (2x – 15) = arcsin (x 2 – 6x – 8) .

Решение.

Так как уравнение вида arcsin f(x) = arcsin g(x) равносильно системе

{f(x) = g(x),
{f(x) € [-1; 1],

то исходное уравнение равносильно системе:

{2x – 15 = x 2 – 6x + 8,
{-1 ≤ 2x – 15 ≤ 1.

Решим полученную систему:

{x 2 – 8x + 7 = 0,
{14 ≤ 2x ≤ 16.

Из первого уравнения по теореме Виета имеем, что x = 1 или x = 7. Решая второе неравенство системы, получаем, что 7 ≤ x ≤ 8. Поэтому в окончательный ответ подходит только корень x = 7.

Ответ: 7 .

Пример 6.

Решить уравнение: (arccos x) 2 – 6 arccos x + 8 = 0.

Решение.

Пусть arccos x = t, тогда t принадлежит отрезку и уравнение принимает вид:

t 2 – 6t + 8 = 0. Решим полученное квадратное уравнение по теореме Виета, получим, что t = 2 или t = 4.

Так как t = 4 не принадлежит отрезку , то получим, что t = 2, т.е. arccos x = 2, а значит x = cos 2.

Ответ: cos 2.

Пример 7.

Решить уравнение: (arcsin x) 2 + (arccos x) 2 = 5π 2 /36 .

Решение.

Воспользуемся равенством arcsin x + arccos x = π/2 и запишем уравнение в виде

(arcsin x) 2 + (π/2 – arcsin x) 2 = 5π 2 /36.

Пусть arcsin x = t, тогда t принадлежит отрезку [-π/2; π/2] и уравнение принимает вид:

t 2 + (π/2 – t) 2 = 5π 2 /36.

Решим полученное уравнение:

t 2 + π 2 /4 – πt + t 2 = 5π 2 /36;

2t 2 – πt + 9π 2 /36 – 5π 2 /36 = 0;

2t 2 – πt + 4π 2 /36 = 0;

2t 2 – πt + π 2 /9 = 0. Умножим каждое слагаемое на 9, чтобы избавиться от дробей в уравнении, получим:

18t 2 – 9πt + π 2 = 0.

Найдем дискриминант и решим полученное уравнение:

D = (-9π) 2 – 4 · 18 · π 2 = 9π 2 .

t = (9π – 3π) / 2 · 18 или t = (9π + 3π) / 2 · 18;

t = 6π/36 или t = 12π/36.

После сокращения имеем:

t = π/6 или t = π/3. Тогда

arcsin x = π/6 или arcsin x = π/3.

Таким образом, x = sin π/6 или x = sin π/3. То есть x = 1/2 или x =√3/2.

Ответ: 1/2; √3/2.

Пример 8.

Найти значение выражения 5nx 0 , где n – количество корней, а x 0 – отрицательный корень уравнения 2 arcsin x = - π – (x + 1) 2 .

Решение.

Так как -π/2 ≤ arcsin x ≤ π/2, то -π ≤ 2 arcsin x ≤ π. Кроме того, (x + 1) 2 ≥ 0 при всех действительных x,
тогда -(x + 1) 2 ≤ 0 и -π – (x + 1) 2 ≤ -π.

Таким образом, уравнение может иметь решение, если обе его части одновременно равны –π , т.е. уравнение равносильно системе:

{2 arcsin x = -π,
{-π – (x + 1) 2 = -π.

Решим полученную систему уравнений:

{arcsin x = -π/2,
{(x + 1) 2 = 0.

Из второго уравнения имеем, что x = -1, соответственно n = 1, тогда 5nx 0 = 5 · 1 · (-1) = -5.

Ответ: -5.

Как показывает практика, умение решать уравнения с обратными тригонометрическими функциями является необходимым условием успешной сдачи экзаменов. Именно поэтому тренировка в решении таких задач просто необходима и является обязательной при подготовке к ЕГЭ.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Уроки 32-33. Обратные тригонометрические функции

09.07.2015 5917 0

Цель: рассмотреть обратные тригонометрические функции, их использование для записи решений тригонометрических уравнений.

I. Сообщение темы и цели уроков

II. Изучение нового материала

1. Обратные тригонометрические функции

Рассмотрение этой темы начнем со следующего примера.

Пример 1

Решим уравнение: a ) sin x = 1/2; б) sin x = а.

а) На оси ординат отложим значение 1/2 и построим углы x 1 и х2, для которых sin x = 1/2. При этом х1 + х2 = π, откуда х2 = π – x 1 . По таблице значений тригонометрических функций найдем величину х1 = π/6, тогда Учтем периодичность функции синуса и запишем решения данного уравнения: где k ∈ Z .

б) Очевидно, что алгоритм решения уравнения sin х = а такой же, как и в предыдущем пункте. Разумеется, теперь по оси ординат откладывается величина а. Возникает необходимость каким-то образом обозначить угол х1. Условились такой угол обозначать символом arcsin а. Тогда решения данного уравнения можно записать в виде Эти две формулы можно объединить в одну: при этом

Аналогичным образом вводятся и остальные обратные тригонометрические функции.

Очень часто бывает необходимо определить величину угла по известному значению его тригонометрической функции. Такая задача является многозначной - существует бесчисленное множество углов, тригонометрические функции которых равны одному и тому же значению. Поэтому, исходя из монотонности тригонометрических функций, для однозначного определения углов вводят следующие обратные тригонометрические функции.

Арксинус числа a (arcsin , синус которого равен а, т. е.

Арккосинус числа a (arccos а) - такой угол а из промежутка , косинус которого равен а, т. е.

Арктангенс числа a (arctg а) - такой угол а из промежутка тангенс которого равен а, т. е. tg а = а.

Арккотангенс числа a (arcctg а) - такой угол а из промежутка (0; π), котангенс которого равен а, т. е. ctg а = а.

Пример 2

Найдем:

Учитывая определения обратных тригонометрических функций получим:


Пример 3

Вычислим

Пусть угол а = arcsin 3/5, тогда по определению sin a = 3/5 и . Следовательно, надо найти cos а. Используя основное тригонометрическое тождество, получим: Учтено, что и cos a ≥ 0. Итак,

Свойства функции

Функция

у = arcsin х

у = arccos х

у = arctg х

у = arcctg х

Область определения

х ∈ [-1; 1]

х ∈ [-1; 1]

х ∈ (-∞; +∞)

х ∈ (-∞ +∞)

Область значений

y ∈ [ -π/2 ; π /2 ]

y ∈

y ∈ (-π/2 ; π /2 )

y ∈ (0; π)

Четность

Нечетная

Ни четная, ни нечетная

Нечетная

Ни четная, ни нечетная

Нули функции (y = 0)

При х = 0

При х = 1

При х = 0

у ≠ 0

Промежутки знакопостоянства

у > 0 при х ∈ (0; 1],

у < 0 при х ∈ [-1; 0)

у > 0 при х ∈ [-1; 1)

у > 0 при х ∈ (0; +∞),

у < 0 при х ∈ (-∞; 0)

у > 0 при x ∈ (-∞; +∞)

Монотонность

Возрастает

Убывает

Возрастает

Убывает

Связь с тригонометрической функцией

sin у = х

cos у = х

tg у = х

ctg у = х

График



Приведем еще ряд типичных примеров, связанных с определениями и основными свойствами обратных тригонометрических функций.

Пример 4

Найдем область определения функции

Для того чтобы функция у была определена, необходимо выполнение неравенства которое эквивалентно системе неравенств Решением первого неравенства является промежуток х (-∞; +∞), второго - Этот промежуток и является решением системы неравенств, а следовательно, и областью определения функции

Пример 5

Найдем область изменения функции

Рассмотрим поведение функции z = 2х - х2 (см. рисунок).

Видно, что z ∈ (-∞; 1]. Учитывая, что аргумент z функции арккотангенса меняется в указанных пределах, из данных таблицы получим, что Таким образом, область изменения

Пример 6

Докажем, что функция у = arctg х нечетная. Пусть Тогда tg а = -х или х = - tg а = tg (- a ), причем Следовательно, - a = arctg х или а = - arctg х. Таким образом, видим, что т. е. у(х) - функция нечетная.

Пример 7

Выразим через все обратные тригонометрические функции

Пусть Очевидно, что Тогда Так как

Введем угол Так как то

Аналогично поэтому и

Итак,

Пример 8

Построим график функции у = cos (arcsin х).

Обозначим а = arcsin x , тогда Учтем, что х = sin а и у = cos а, т. е. x 2 + у2 = 1, и ограничения на х (х [-1; 1]) и у (у ≥ 0). Тогда графиком функции у = cos (arcsin х) является полуокружность.

Пример 9

Построим график функции у = arccos (cos x ).

Так как функция cos х изменяется на отрезке [-1; 1], то функция у определена на всей числовой оси и изменяется на отрезке . Будем иметь в виду, что у = arccos (cos x ) = х на отрезке ; функция у является четной и периодической с периодом 2π. Учитывая, что этими свойствами обладает функция cos x , теперь легко построить график.


Отметим некоторые полезные равенства:

Пример 10

Найдем наименьшее и наибольшее значения функции Обозначим тогда Получим функцию Эта функция имеет минимум в точке z = π/4, и он равен Наибольшее значение функции достигается в точке z = -π/2, и оно равно Таким образом, и

Пример 11

Решим уравнение

Учтем, что Тогда уравнение имеет вид: или откуда По определению арктангенса получим:

2. Решение простейших тригонометрических уравнений

Аналогично примеру 1 можно получить решения простейших тригонометрических уравнений.

Уравнение

Решение

tgx = а

ctg х = а

Пример 12

Решим уравнение

Так как функция синус нечетная, то запишем уравнение в виде Решения этого уравнения: откуда находим

Пример 13

Решим уравнение

По приведенной формуле запишем решения уравнения: и найдем

Заметим, что в частных случаях (а = 0; ±1) при решении уравнений sin х = а и cos х = а проще и удобнее использовать не общие формулы, а записывать решения на основании единичной окружности:

для уравнения sin х = 1 решения

для уравнения sin х = 0 решения х = π k ;

для уравнения sin х = -1 решения

для уравнения cos х = 1 решения х = 2π k ;

для уравнения cos х = 0 решения

для уравнения cos х = -1 решения

Пример 14

Решим уравнение

Так как в данном примере имеется частный случай уравнения, то по соответствующей формуле запишем решение: откуда найдем

III. Контрольные вопросы (фронтальный опрос)

1. Дайте определение и перечислите основные свойства обратных тригонометрических функций.

2. Приведите графики обратных тригонометрических функций.

3. Решение простейших тригонометрических уравнений.

IV. Задание на уроках

§ 15, № 3 (а, б); 4 (в, г); 7 (а); 8 (а); 12 (б); 13 (а); 15 (в); 16 (а); 18 (а, б); 19 (в); 21;

§ 16, № 4 (а, б); 7 (а); 8 (б); 16 (а, б); 18 (а); 19 (в, г);

§ 17, № 3 (а, б); 4 (в, г); 5 (а, б); 7 (в, г); 9 (б); 10 (а, в).

V. Задание на дом

§ 15, № 3 (в, г); 4 (а, б); 7 (в); 8 (б); 12 (а); 13 (б); 15 (г); 16 (б); 18 (в, г); 19 (г); 22;

§ 16, № 4 (в, г); 7 (б); 8 (а); 16 (в, г); 18 (б); 19 (а, б);

§ 17, № 3 (в, г); 4 (а, б); 5 (в, г); 7 (а, б); 9 (г); 10 (б, г).

VI. Творческие задания

1. Найдите область определения функции:


Ответы :

2. Найдите область значений функции:

Ответы:

3. Постройте график функции:


VII. Подведение итогов уроков

Даны определения обратных тригонометрических функций и их графики. А также формулы, связывающие обратные тригонометрические функции, формулы сумм и разностей.

Определение обратных тригонометрических функций

Поскольку тригонометрические функции периодичны, то обратные к ним функции не однозначны. Так, уравнение y = sin x , при заданном , имеет бесконечно много корней. Действительно, в силу периодичности синуса, если x такой корень, то и x + 2πn (где n целое) тоже будет корнем уравнения. Таким образом, обратные тригонометрические функции многозначны . Чтобы с ними было проще работать, вводят понятие их главных значений. Рассмотрим, например, синус: y = sin x . Если ограничить аргумент x интервалом , то на нем функция y = sin x монотонно возрастает. Поэтому она имеет однозначную обратную функцию, которую называют арксинусом: x = arcsin y .

Если особо не оговорено, то под обратными тригонометрическими функциями имеют в виду их главные значения, которые определяются следующими определениями.

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ), имеющая область определения и множество значений .

Арктангенс (y = arctg x ) - это функция, обратная к тангенсу (x = tg y ), имеющая область определения и множество значений .

Арккотангенс (y = arcctg x ) - это функция, обратная к котангенсу (x = ctg y ), имеющая область определения и множество значений .

Графики обратных тригонометрических функций

Графики обратных тригонометрических функций получаются из графиков тригонометрических функций зеркальным отражением относительно прямой y = x . См. разделы Синус, косинус , Тангенс, котангенс .

y = arcsin x


y = arccos x


y = arctg x


y = arcctg x

Основные формулы

Здесь следует особо обратить внимание на интервалы, для которых справедливы формулы.

arcsin(sin x) = x при
sin(arcsin x) = x
arccos(cos x) = x при
cos(arccos x) = x

arctg(tg x) = x при
tg(arctg x) = x
arcctg(ctg x) = x при
ctg(arcctg x) = x

Формулы, связывающие обратные тригонометрические функции

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при