Движение по окружности. Равномерное движение тела по окружности

Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

\(~\upsilon = \frac{l}{\Delta t}.\)

Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

\(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

В СИ единицей угловой скорости является радиан в секунду (рад/с).

При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

\(~\varphi = \varphi_0 + \omega t.\)

Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

\(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

\(~T = \frac{\Delta t}{N},\)

где N - число оборотов, совершенных телом за время Δt .

За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

\(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

\(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

Следовательно,

\(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.

1. Достаточно часто можно наблюдать такое движение тела, при котором его траекторией является окружность. По окружности движется, например, точка обода колеса при его вращении, точки вращающихся деталей станков, конец стрелки часов, ребенок, сидящий на какой‑либо фигуре вращающихся каруселей.

При движении по окружности может изменяться не только направление скорости тела, но и ее модуль. Возможно движение, при котором изменяется только направление скорости, а ее модуль остается постоянным. Такое движение называют равномерным движением тела по окружности . Введем характеристики этого движения.

2. Движение тела по окружности повторяется через определенные промежутки времени, равные периоду обращения.

Периодом обращения называют время, в течение которого тело совершает один полный оборот.

Период обращения обозначают буквой T . За единицу периода обращения в СИ принята секунда (1 с ).

Если за время t тело совершило N полных оборотов, то период обращения равен:

T = .

Частотой обращения называют число полных оборотов тела за одну секунду.

Частоту обращения обозначают буквой n .

n = .

За единицу частоты обращения в СИ принята секунда в минус первой степени (1 с– 1 ).

Частота и период обращения связаны следующим образом:

n = .

3. Рассмотрим величину, характеризующую положение тела на окружности. Пусть в начальный момент времени тело находилось в точке A , а за время t оно переместилось в точку B (рис. 38).

Проведем радиус‑вектор из центра окружности в точку A и радиус‑вектор из центра окружности в точку B . При движении тела по окружности радиус‑вектор повернется за время t на угол j. Зная угол поворота радиуса‑вектора, можно определить положение тела на окружности.

Единица угла поворота радиуса‑вектора в СИ - радиан (1 рад ).

При одном и том же угле поворота радиуса‑вектора точки A и B , находящиеся на разных расстояниях от его центра равномерно вращающегося диска (рис. 39), пройдут разные пути.

4. При движении тела по окружности мгновенную скорость называют линейной скоростью .

Линейная скорость тела, равномерно движущегося по окружности, оставаясь постоянной по модулю, меняется по направлению и в любой точке направлена по касательной к траектории.

Модуль линейной скорости можно определить по формуле:

v = .

Пусть тело, двигаясь по окружности радиусом R , совершило один полный оборот, Тогда пройденный им путь равен длине окружности: l = 2pR , а время равно периоду обращения T . Следовательно, линейная скорость тела:

v = .

Поскольку T = , то можно записать

v = 2pRn .

Быстроту обращения тела характеризуют угловой скоростью .

Угловой скоростью называют физическую величину, равную отношению угла поворота радиуса-вектора к промежутку времени, за которое этот поворот произошел.

Угловая скорость обозначается буквой w.

w = .

За единицу угловой скорости в СИ принимают радиан в секунду (1 рад/с ):

[w] == 1 рад/с.

За время, равное периоду обращения T , тело совершает полный оборот и угол поворота радиуса-вектора j = 2p. Поэтому угловая скорость тела:

w =или w = 2pn .

Линейная и угловая скорости связаны друг с другом. Запишем отношение линейной скорости к угловой:

== R .

Таким образом,

v = wR .

При одинаковой угловой скорости точек A и B , расположенных на равномерно вращающемся диске (см. рис. 39), линейная скорость точки A больше линейной скорости точки B : v A > v B .

5. При равномерном движении тела по окружности модуль его линейной скорости остается постоянным, а направление скорости меняется. Поскольку скорость - величина векторная, то изменение направления скорости означает, что тело движется по окружности с ускорением.

Выясним, как направлено и чему равно это ускорение.

Напомним, что ускорение тела определяется по формуле:

a == ,

где Dv - вектор изменения скорости тела.

Направление вектора ускорения a совпадает с направлением вектора Dv .

Пусть тело, движущееся по окружности радиусом R , за ма-лый промежуток времени t переместилось из точки A в точку B (рис. 40). Чтобы найти изменение скорости тела Dv , в точку A перенесем параллельно самому себе вектор v и вычтем из него v 0 , что равноценно сложению вектора v с вектором –v 0 . Вектор, направленный от v 0 к v , и есть вектор Dv .

Рассмотрим треугольники AOB и ACD . Оба они равнобедренные (AO = OB и AC = AD, поскольку v 0 = v ) и имеют равные углы: _AOB = _CAD (как углы со взаимно перпендикулярными сторонами: AO B v 0 , OB B v ). Следовательно, эти треугольники подобны и можно записать отношение соответствующих сторон:= .

Поскольку точки A и B расположены близко друг к другу, то хорда AB мала и ее можно заменить дугой. Длина дуги- путь, пройденный телом за время t с постоянной скоростью v : AB = vt .

Кроме того, AO = R , DC = Dv , AD = v . Следовательно,

= ;= ;= a .

Откуда ускорение тела

a = .

Из рисунка 40 видно, что чем меньше хорда AB , тем точнее направление вектора Dv совпадает с радиусом окружности. Следовательно, вектор изменения скорости Dv и вектор ускорения a направлены по радиусу к центру окружности. Поэтому ускорение при равномерном движении тела по окружности называют центростремительным .

Таким образом,

при равномерном движении тела по окружности его ускорение постоянно по модулю и в любой точке направлено по радиусу окружности к ее центру.

Учитывая, что v = wR , можно записать другую формулу центростремительного ускорения:

a = w 2 R .

6. Пример решения задачи

Частота обращения карусели 0,05 с– 1 . Человек, вращающийся на карусели, находится на расстоянии 4 м от оси вращения. Определите центростремительное ускорение человека, период обращения и угловую скорость карусели.

Дано :

Решение

n = 0,05 с– 1

R = 4 м

Центростремительное ускорение равно:

a = w2R =(2pn )2R =4p2n 2R .

Период обращения: T = .

Угловая скорость карусели: w = 2pn .

a ?

T ?

a = 4 (3,14) 2 (0,05с– 1) 2 4 м 0,4 м/с 2 ;

T == 20 с;

w = 2 3,14 0,05 с– 1 0,3 рад/с.

Ответ: a 0,4 м/с 2 ; T = 20 с; w 0,3 рад/с.

Вопросы для самопроверки

1. Какое движение называют равномерным движением по окружности?

2. Что называют периодом обращения?

3. Что называют частотой обращения? Как связаны между собой период и частота обращения?

4. Что называют линейной скоростью? Как она направлена?

5. Что называют угловой скоростью? Что является единицей угловой скорости?

6. Как связаны угловая и линейная скорости движения тела?

7. Как направлено центростремительное ускорение? По какой формуле оно рассчитывается?

Задание 9

1. Чему равна линейная скорость точки обода колеса, если радиус колеса 30 см и один оборот она совершает за 2 с? Чему равна угловая скорость колеса?

2. Скорость автомобиля 72 км/ч. Каковы угловая скорость, частота и период обращения колеса автомобиля, если диаметр колеса70 см? Сколько оборотов совершит колесо за 10 мин?

3. Чему равен путь, пройденный концом минутной стрелки будильника за 10 мин, если ее длина 2,4 см?

4. Каково центростремительное ускорение точки обода колеса автомобиля, если диаметр колеса 70 см? Скорость автомобиля 54 км/ч.

5. Точка обода колеса велосипеда совершает один оборот за 2 с. Радиус колеса 35 см. Чему равно центростремительное ускорение точки обода колеса?

Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

Модуль центростремительного ускорения равен

a ЦС =v 2 / R

Где v – линейная скорость, R – радиус окружности

Рис. 1.22. Движение тела по окружности.

Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

1 радиан= l / R

Так как длина окружности равна

l = 2πR

360 о = 2πR / R = 2π рад.

Следовательно

1 рад. = 57,2958 о = 57 о 18’

Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

ω = φ / t

Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

v= l / t

Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

l = Rφ

где R – радиус окружности.

Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

v = l / t = Rφ / t = Rω или v = Rω

Рис. 1.23. Радиан.

Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

n = 1 / T

За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

T = 2π / ω

То есть угловая скорость равна

ω = 2π / T = 2πn

Центростремительное ускорение можно выразить через период Т и частоту обращения n:

a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2

На этом уроке мы рассмотрим криволинейное движение, а именно равномерное движение тела по окружности. Мы узнаем, что такое линейная скорость, центростремительное ускорение при движении тела по окружности. Также введем величины, которые характеризуют вращательное движение (период вращения, частота вращения, угловая скорость), и свяжем эти величины между собой.

Под равномерным движением по окружности понимают, что тело за любой одинаковый промежуток времени поворачивается на одинаковый угол (см. Рис. 6).

Рис. 6. Равномерное движение по окружности

То есть модуль мгновенной скорости не меняется:

Такую скорость называют линейной .

Хотя модуль скорости не меняется, направление скорости изменяется непрерывно. Рассмотрим векторы скорости в точках A и B (см. Рис. 7). Они направлены в разные стороны, поэтому не равны. Если вычесть из скорости в точке B скорость в точке A , получаем вектор .

Рис. 7. Векторы скорости

Отношение изменения скорости () ко времени, за которое это изменение произошло (), является ускорением.

Следовательно, любое криволинейное движение является ускоренным .

Если рассмотреть треугольник скоростей, полученный на рисунке 7, то при очень близком расположении точек A и B друг к другу угол (α) между векторами скорости будет близок к нулю:

Также известно, что этот треугольник равнобедренный, поэтому модули скоростей равны (равномерное движение):

Следовательно, оба угла при основании этого треугольника неограниченно близки к :

Это означает, что ускорение, которое направлено вдоль вектора , фактически перпендикулярно касательной. Известно, что линия в окружности, перпендикулярная касательной, является радиусом, поэтому ускорение направлено вдоль радиуса к центру окружности. Называется такое ускорение центростремительным.

На рисунке 8 изображены рассмотренный ранее треугольник скоростей и равнобедренный треугольник (две стороны являются радиусами окружности). Эти треугольники являются подобными, так как у них равны углы, образованные взаимно перпендикулярными прямыми (радиус, как и вектор перпендикулярны к касательной).

Рис. 8. Иллюстрация к выводу формулы центростремительного ускорения

Отрезок AB является перемещением (). Мы рассматриваем равномерное движение по окружности, поэтому:

Подставим полученное выражение для AB в формулу подобия треугольников:

Понятий «линейная скорость», «ускорение», «координата» не достаточно для того, чтобы описать движение по кривой траектории. Поэтому необходимо ввести величины, характеризующие вращательное движение.

1. Периодом вращения (T ) называется время одного полного оборота. Измеряется в системе СИ в секундах.

Примеры периодов: Земля вращается вокруг своей оси за 24 часа (), а вокруг Солнца - за 1 год ().

Формула для вычисления периода:

где - полное время вращения; - число оборотов.

2. Частота вращения (n ) - число оборотов, которое тело совершает в единицу времени. Измеряется в системе СИ в обратных секундах.

Формула для нахождения частоты:

где - полное время вращения; - число оборотов

Частота и период - обратно пропорциональные величины:

3. Угловой скоростью () называют отношение изменения угла, на который повернулось тело, ко времени, за которое этот поворот произошел. Измеряется в системе СИ в радианах, деленных на секунды.

Формула для нахождения угловой скорости:

где - изменение угла; - время, за которое произошел поворот на угол .

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным , оно является равноускоренным .

Угловая скорость

Выберем на окружности точку 1 . Построим радиус. За единицу времени точка переместится в пункт 2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T - это время, за которое тело совершает один оборот.

Частота вращение - это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть период T . Путь , который преодолевает точка - это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения


Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна v A и v B соответственно. Ускорение - изменение скорости за единицу времени. Найдем разницу векторов.